Continued fraction representations of quadratic irrationals and closed trajectories of modular billiards

Kentaro Ito

Chubu University

Mini-workshop "Geometry and Topology of Discrete Groups"

Aichi Institute of Thechnology November 1, 2024

1/26

Introduction

- $\Delta = \{z \in \mathbb{C} \mid 0 < z < 1/2, |z| > 1\}$: a fundamental domain of $GL(2,\mathbb{Z}) \curvearrowright \mathbb{H}^2$.
- \bullet An oriented geodesic γ in \mathbb{H}^2
- \rightsquigarrow The trajectory of a modular billiard (or billiard) *B* in $\Delta = \mathbb{H}^2/GL(2,\mathbb{Z})$.
- The billiard *B* is closed
- \iff end points of γ are quadratic irrational ω and its conjugate ω'
- $\iff \omega$ is (equivalent to) a purely periodic continued fraction $[\overline{a_0, a_1, \dots a_k}]$ We want to understand the relation "billiard \iff period."

There are lot of references based on $SL(2,\mathbb{Z})$, but a few on $GL(2,\mathbb{Z})$.

 $\omega = \left[\overline{3.1.2}\right]$

Continued Fractions

Definition 1

Continued fraction is a rational number of the form

$$egin{aligned} [a_0,a_1,\ldots,a_n] &:= a_0 + rac{1}{a_1 + rac{1}{\ddots rac{\ddots}{a_{n-1} + rac{1}{a_n}}} } & (a_0 \in \mathbb{Z},a_1,a_2,\ldots,a_n \in \mathbb{N}) \end{aligned}$$

e.g.

$$[1,2,3,4] = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}} = 1 + \frac{1}{2 + \frac{1}{\frac{13}{4}}} = 1 + \frac{1}{2 + \frac{4}{13}} = 1 + \frac{1}{\frac{30}{13}} = 1 + \frac{13}{30} = \frac{43}{30}.$$

Continued Fraction Expansions of Irrational Numbers

 \bullet We can see that $\sqrt{2}=[1,2,2,2,\ldots]$ from

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{1 + \sqrt{2}} = 1 + \frac{1}{2 + (\sqrt{2} - 1)} = \cdots$$

• What is the number of the form x = [1, 1, 1, ...]? Since

$$x = [1, 1, 1, \ldots] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}} = 1 + \frac{1}{x},$$

۰.

we have
$$x^2 = x + 1$$
, thus $x = \frac{1 + \sqrt{5}}{2}$. This is the golden number.

Theorem 2

The map

$$\mathbb{Z} \times \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{R} \setminus \mathbb{Q}, \qquad (a_n)_{n=0}^{\infty} \mapsto [a_0, a_1, a_2, \ldots]$$

is a bijection.

Quadratic Irrationals

Definition 3

An irrational number ω is called quadratic if ω is a root of a quadratic equation $ax^2 + bx + c = 0$ with integer coefficients. The other root ω' of the equation is called the conjugate of ω .

e.g. •
$$\omega = \sqrt{2} \Rightarrow \omega' = -\sqrt{2}$$
. • $\omega = \frac{1+\sqrt{5}}{2} \Rightarrow \omega' = \frac{1-\sqrt{5}}{2}$.

Theorem 4 (Lagrange)

Let $\omega = [a_0, a_1, \ldots]$ be an irrational number. Then the followings are equivalent:

- ω is a quadratic irrational.
- $\omega = [a_0, a_1, \ldots]$ is (altimately) periodic, i.e. $\exists k \in \mathbb{Z}_{\geq 0}, l \in \mathbb{N}$ s.t.

$$\omega = [a_0, \ldots, a_k, \overline{a_{k+1}, \ldots, a_{k+l}}].$$

e.g. • $[4, 2, 3, 7, 3, 7, 3, 7, ...] = [4, 2, \overline{3, 7}] = [4, 2, 3, \overline{7, 3}].$ • $\sqrt{2} = [1, \overline{2}].$ • $\frac{1+\sqrt{5}}{2} = [\overline{1}].$ • $\sqrt{7} = [2, \overline{1, 1, 1, 4}].$ • $[\overline{1, 1, 1, 4}] = \frac{2+\sqrt{7}}{3}.$

Action of $\mathit{GL}(2,\mathbb{Z})$ on $\mathbb{R}\cup\{\infty\}$

 $\begin{aligned} & \textit{GL}(2,\mathbb{Z}) := \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, \, \det A = \pm 1 \right\} : \text{ unimodular group.} \\ & \textit{SL}(2,\mathbb{Z}) := \{ A \in \textit{GL}(2,\mathbb{Z}) \mid \det A = 1 \} : \text{ modular group.} \\ & \text{The action } \textit{GL}(2,\mathbb{Z}) \curvearrowright \widehat{\mathbb{R}} := \mathbb{R} \cup \{ \infty \} \text{ is defined as:} \end{aligned}$

$$A\cdot x:=rac{a\,x+b}{c\,x+d}, \quad ext{where} \ A=\left(egin{array}{c} a & b \ c & d \end{array}
ight)\in \textit{GL}(2,\mathbb{Z}) ext{ and } x\in\widehat{\mathbb{R}}.$$

Note that $A \cdot x = (-A) \cdot x$ and $(AB) \cdot x = A \cdot (B \cdot x)$.

Lemma 5

For every
$$x \in \mathbb{R}$$
, $[a_0, a_1, \cdots, a_n, x] = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \cdot x.$

$$(Proof) \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \cdot x = a_n + \frac{1}{x}. \\ \begin{pmatrix} a_{n-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} a_{n-1} & 1 \\ 1 & 0 \end{pmatrix} \cdot (a_n + \frac{1}{x}) = a_{n-1} + \frac{1}{a_n + \frac{1}{x}}, \text{ and so on.}$$

Equivalent Relation, Periods

Definition 6 (Equivalent reration)

Let ω, η be quadratic irrationals. We define $\omega \sim \eta$ iff $\exists A \in GL(2,\mathbb{Z})$ s.t. $\eta = A \cdot \omega$.

Lemma 7

Every quadratic irrational $\omega = [a_0, \ldots, a_k, \overline{a_{k+1}, \ldots, a_{k+l}}]$ is equivalent to a purely periodic one $\eta = [\overline{a_{k+1}, \ldots, a_{k+l}}]$.

e.g. For
$$\omega = [4, 2, \overline{1, 2, 3}]$$
, set $\eta = [\overline{1, 2, 3}]$. Then

$$\omega = [4,2,\eta] = \left(egin{array}{cc} 4 & 1 \ 1 & 0 \end{array}
ight) \left(egin{array}{cc} 2 & 1 \ 1 & 0 \end{array}
ight) \cdot \eta = \left(egin{array}{cc} 9 & 4 \ 2 & 1 \end{array}
ight) \cdot \eta$$

Thus $[4,2,\overline{1,2,3}] \sim [\overline{1,2,3}] \sim [\overline{2,3,1}] \sim [\overline{3,1,2}].$

When ω ~ [a₀, a₁,..., a_k], we define the period of ω by the sequence (a₀, a₁,..., a_k) determined up to cyclic permutations.
e.g. When ω = [4, 2, 1, 2, 3], the period of [ω] is (1, 2, 3) = (2, 3, 1) = (3, 1, 2).

Purely Periodic Quadratic Irrationals

Proposition 8

Let ω be a quadratic irrational. Then the followings are equivalent:

- ω is purely periodic, i.e. $\omega = [\overline{a_0, a_1, \dots, a_k}]$.
- ω is reduced, i.e. $\omega > 1$ and $-1 < \omega' < 0$.
- e.g. For $\omega = [\overline{1,2}]$, we have

$$\omega = [1, 2, \omega] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \cdot \omega = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix} \cdot \omega = \frac{3\omega + 1}{2\omega + 1}.$$

Thus $\omega(2\omega+1) = 3\omega+1 \Leftrightarrow 2\omega^2 - 2\omega - 1 = 0$. Hence $\omega = \frac{1+\sqrt{3}}{2}, \ \omega' = \frac{1-\sqrt{3}}{2}$.

Corollary 9

Let
$$\omega = [\overline{a_0, a_1, \dots, a_k}]$$
 and put $A := \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_k & 1 \\ 1 & 0 \end{pmatrix}$.
Then we have $A \cdot \omega = \omega$ and $A \cdot \omega' = \omega'$.

A is a generator of $\mathsf{Stab}(\omega) := \{ M \in \mathsf{GL}(2,\mathbb{Z}) \mid M \cdot \omega = \omega \}.$

Hyperbolic Geometry (The upper half-plane model)

The upper half-plane model of the hyperbolic plane :

 $\mathbb{H}^2 = \{ z = x + iy \in \mathbb{C} \mid y > 0 \} \text{ with } ds^2 = \frac{dx^2 + dy^2}{y^2}. \text{ Note that } \partial_{\infty} \mathbb{H}^2 = \widehat{\mathbb{R}}.$

- \bullet The geodesics in \mathbb{H}^2 are semicircles or straight lines orthogonal to $\mathbb{R}.$
- The action $GL(2,\mathbb{Z}) \curvearrowright \widehat{\mathbb{R}}$ extends to the isometric action $GL(2,\mathbb{Z}) \curvearrowright \mathbb{H}^2$ as

$$A \cdot z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \begin{cases} \frac{az+b}{cz+d} & \text{if det } A = 1, \\ \\ \frac{a\overline{z}+b}{c\overline{z}+d} & \text{if det } A = -1. \end{cases}$$

• Two rational numbers $\frac{p}{q}$, $\frac{r}{s}$ are called neighbors if $ps - qr = \pm 1$. Joining all neighbors by geodesics in \mathbb{H}^2 , we obtain the Farrey triangulation \mathcal{F} of \mathbb{H}^2 . The action of $GL(2,\mathbb{Z})$ on \mathbb{H}^2 preserves the Farrey triangulation.

Hyperbolic Geometry (The unit disk model)

The unit disk model of the hyperbolic plane : $\mathbb{D}^2 = \{z \in \mathbb{C} \mid |z| < 1\}$ with $ds^2 = \frac{|dz|^2}{(1-|z|^2)^2}$. The map $\Phi : \mathbb{H}^2 \to \mathbb{D}^2; \quad z \mapsto i \frac{z-i}{z+i}$

is an isometry. From now on, we will identy \mathbb{D}^2 with \mathbb{H}^2 via $\Phi.$

₫ω

Generators of $SL(2,\mathbb{Z})$ and $GL(2,\mathbb{Z})$

• Let
$$L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL(2, \mathbb{Z})$. Then $SL(2, \mathbb{Z}) = \langle L, R \rangle$.
Note that $L \cdot z = z + 1$ and $R \cdot z = z/(z + 1)$.
• Let $U = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $V = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$, $W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL(2, \mathbb{Z})$.
Then $GL(2, \mathbb{Z}) = \langle U, V, W \rangle = \langle L, W \rangle$.
Note that $U \cdot z = -\overline{z}$, $V \cdot z = -\overline{z} + 1$ and $W \cdot z = 1/\overline{z}$.
The domain $\Delta := \{z \in \mathbb{H}^2 \mid 0 \le \operatorname{Re} z \le 1/2, |z| > 1\}$ is a fundamental domain of $GL(2, \mathbb{Z}) \curvearrowright \mathbb{H}^2$.

Stabilizers of Purely Periodic Irrationals

Let
$$\omega = [\overline{a_0, a_1, \dots, a_n}]$$
 and put $A := \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$.
Recall that $A \cdot \omega = \omega$, and that A generates $\operatorname{Stab}(\omega)$.
Since $\begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix} = L^a W$, A can be written as a ward in L and W :
 $(\star) \qquad A = L^{a_0} W L^{a_1} W \cdots L^{a_n} W$.

Furthermore, since LW = WR and $W^2 = I$, A can also be written as a ward in L, R (and W):

$$(\star\star) \qquad A = \begin{cases} L^{a_0} R^{a_1} \cdots L^{a_{n-1}} R^{a_n} & (n: \text{odd}) \\ L^{a_0} R^{a_1} \cdots L^{a_{n-2}} R^{a_{n-1}} L^{a_n} W & (n: \text{even}) \end{cases}$$

l

Periods and Cutting Sequences

Proposition 10

Let ω be a purely periodic quadratic irrational and γ a geodesic joining ω' to ω . Then the followings are equivalent:

• $\omega = [\overline{a_0, a_1, \ldots, a_n}].$

• The cutting sequence of γ across ${\mathcal F}$ is

$$\cdots L^{a_{n-1}}R^{a_n} \mid L^{a_0}R^{a_1}L^{a_2}R^{a_3}\cdots$$

where L, R stand for "left" and "right", respectively.

e.g.

- For $\omega = [\overline{3, 1, 2}]$, the cutting sequence is $\cdots R^3 L R^2 \mid L^3 R L^2 R^3 \cdots \omega$
- For $\omega = [\overline{3,2}]$, the cutting sequence is $\cdots L^3 R^2 \mid L^3 R^2 L^3 \cdots$

Periods and Cutting Sequences

Proposition 11 (Reprint of Prop. 10)

 $\omega = [\overline{a_0, a_1, \dots, a_n}] \iff$ The cutting sequence of γ across \mathcal{F} is $\cdots L^{a_{n-1}}R^{a_n} \mid L^{a_0}R^{a_1}L^{a_2}R^{a_3}\cdots$ where L, R stand for "left" and "right", respectively.

Galois' Theorem

Theorem 12 (Galois)

For
$$\omega = [\overline{a_0, a_1, \dots, a_n}]$$
, we have $-\frac{1}{\omega'} = [\overline{a_n, \dots, a_1, a_0}]$.

• $\omega\omega' = -1 \iff (a_0, \ldots, a_n)$ is a palindrome. • $\omega' \sim [\overline{a_n, \ldots, a_1, a_0}]$. (Proof of Thm) For the geodesic γ from ω' to ω , the cutting sequence is $\cdots L^{a_{n-1}}R^{a_n}|L^{a_0}R^{a_1}\cdots$. If we apply $J \cdot z = -1/z$ on \mathbb{H}^2 (where $J = L^{-1}RL^{-1}$), $J(\gamma)$ with its orientation reversed is a geodesic from $-1/\omega$ to $-1/\omega'$ with the cutting sequence $\cdots L^{a_1}R^{a_0}|L^{a_n}R^{a_{n-1}}\cdots$.

15 / 26

Billiards in Δ

Let $\omega \sim [\overline{a_0, a_1, \ldots, a_n}]$, and γ a geodesic in \mathbb{H}^2 joining ω' to ω . Since elements in Stab(ω) map γ to itself, γ descends to a closed trajectory of a billiard B_{ω} in the orbifold $\Delta = \mathbb{H}^2/GL(2,\mathbb{Z})$:

$$B_{\omega} := \left(\bigcup_{A \in GL(2,\mathbb{Z})} A \cdot \gamma\right) \cap \Delta.$$

Examples of Billiards

Billiards and Periods

non-orientable			orientable
passes i		doesn't pass <i>i</i>	
once	twice		
e.g. $[\overline{1, 2, 3, 2, 1}]$	e.g. $[\overline{1,2,3,3,2,1}]$	e.g. $[\overline{1,2,3,2,1,2}]$	e.g. $[\overline{1, 2, 3, 1}]$
	i contraction of the second seco	i of the second se	

Billiards and Periods

Definition 13

Let ω be a quadratic irrational.

- ω is called palindromic if the period of ω has an palindromic expression.
- ω is called symmetric if the period of ω is a union of (at most) two palindromes. (There is a symmetric axis if the period is arranged on a circle.)

 $\omega = [4, \overline{1, 1, 3}]$ is palindromic, since its period is $\langle 1, 1, 3 \rangle = \langle 1, 3, 1 \rangle$. $\omega = [\overline{1, 3, 1, 4, 5, 4}]$ is symmetric but not palindromic.

Billiards and Periods

Proposition 14

Let ω be a quadratic irrational.

- B_{ω} is non-orientable $\iff \omega$ is symmetric.
- B_{ω} passes $i \in \partial \Delta \iff \omega$ is palindromic. Furthermore, B_{ω} passes i twice \iff the length of the period of ω is even.

Suppose that
$$\omega \sim [\overline{a_0, a_1, \ldots, a_n}]$$
. Then $\omega' \sim [\overline{a_n, \ldots, a_1, a_0}]$.

•
$$B_{\omega}$$
 passes $i \in \partial \Delta \iff \omega \sim \eta$ s.t. $\eta \eta' = -1 \iff \omega \sim \omega'$)
 $\iff \exists k \text{ s.t. } [\overline{a_k, a_{k+1}, \dots, a_{k-1}}] = [\overline{a_{k-1}, \dots, a_{k+1}, a_k}]$
 $\iff \omega \text{ is palindromic.}$

Billiards Passing the Corners

- B_{ω} passes the corner $i \in \partial \Delta \iff \omega \sim \eta$ s.t. $\eta \eta' = -1$ $\iff \omega$ is equivalent to a solution of $ax^2 + bx - a = 0$.
- B_{ω} passes the corner $\frac{1+i\sqrt{3}}{2} \in \partial \Delta \iff \omega$ is equivalent to a solution of $ax^2 2(a+c)x + c = 0$. For example, $\omega = [\overline{1,2}], [\overline{1,4,1,1}]$ satisfy this condition. Are there any condition on the cycle of ω ?

From Billiards to Periods (The Morse Method)

We rabel the sides of $\partial \Delta$ by U, V and W.

- Let B_{ω} be the billiard of a quadratic irrational ω .
- Starting from a point in $U \cap B_{\omega}$ and following B_{ω} .

Each time the billiard intersects the sides U, V, or W, add that letter to the right.

(When B_{ω} pass *i*, we add WU = UW, and when B_{ω} pass $\frac{1+i\sqrt{3}}{2}$, we add WVW = VWV.)

- We obtain a ward $g(\omega)$ in U, V and W when one return to the starting point.
- Using WU = UW, VWV = WVW and L = VU, we can translate $g(\omega)$ into a word $h(\omega) = L^{a_0} WL^{a_1} W \cdots L^{a_n} W$ in L and W. Then the period of ω is $\langle a_0, a_1, \dots, a_n \rangle$.

e.g.
$$g(\omega) = VUVUVUWV \underline{WU}VUV \underline{WU}$$

 $\rightarrow VUVUVUWV \underline{UW}VUV \underline{UW}$
 $\rightarrow h(\omega) = LLLWLWLLW \rightarrow \langle 3, 1, 2 \rangle = \langle 1, 2, 3 \rangle$

From Billiards to Periods (The Morse Method)

e.g. For $\omega = [\overline{1,3}]$,

 $g(\omega) = VUVUVU\underline{VWV}U = VUVUVU\underline{WVW}U = VUVUVUWVUW$ $h(\omega) = LLLWLW \rightarrow \langle 3, 1 \rangle = \langle 1, 3 \rangle.$

From Billiards to Periods (The Morse Method)

Markov Spectra

For a modular billiard B, let $\lambda(B)$ be twice of the maximal height of B. The set

 $\mathcal{M} := \{\lambda(B) \mid B \text{ is a modular billiard}\}$

is called the Markov spectrum. $\mathcal{M} \cap (0,3)$ is a monotone increasing sequence $\{\lambda(B_{\omega_j}) \mid j \in \mathbb{N}\}$ s.t. $\lim_{j \to \infty} B_{\omega_j} = 3$. Here $\omega_1 = [\overline{1}], \omega_2 = [\overline{2}], \omega_3 = [\overline{2,2,1,1}], \omega_4 = [\overline{2,2,1,1,1,1}], \omega_5 = [\overline{2,2,2,2,1,1}], \omega_6 = [\overline{2,2,1,1,1,1,1,1}] \dots$

cf. N. Andersen and W. Duke, *Markov spectra for modular billiards*, Math. Ann. 373 (2019),1151–1175.

- N. Andersen and W. Duke, Markov spectra for modular billiards, Math. Ann. 373 (2019),1151–1175.
- 2 A. Hatcher, *Topology of numbers*, AMS, 2022.
- S. Katok, Continued fractions, hyperbolic geometry and quadratic forms, Course notes, 2001.
- S. Katok and I. Ugarcovici, Symbolic dynamics for the modular surface and beyond, Bulletin AMS, 44 (2007), 87–132.
- C. Series, *The geometry of Markoff numbers*, Math. Intelligencer 7 (1985), 20–29.
- C. Series, Continued fractions and hyperbolic geometry, Loughborough LMS summer school, 2015.