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Introduction

• ∆ = {z ∈ C | 0 < z < 1/2, |z | > 1}: a fundamental domain of GL(2,Z) ! H2.

• An oriented geodesic γ in H2

! The trajectory of a modular billiard (or billiard) B in ∆ = H2/GL(2,Z).
• The billiard B is closed

⇐⇒ end points of γ are quadratic irrational ω and its conjugate ω′

⇐⇒ ω is (equivalent to) a purely periodic continued fraction [a0, a1, . . . ak ]

We want to understand the relation “billiard" period.”

There are lot of references based on SL(2,Z), but a few on GL(2,Z).
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Continued Fractions

Definition 1
Continued fraction is a rational number of the form

[a0, a1, . . . , an] := a0 +
1

a1 +
1

. . .

. . .

an−1 +
1

an

(a0 ∈ Z, a1, a2, . . . , an ∈ N)

e.g.

[1, 2, 3, 4] = 1 +
1

2 +
1

3 + 1
4

= 1 +
1

2 +
1
13
4

= 1 +
1

2 + 4
13

= 1 +
1
30
13

= 1 +
13
30

=
43
30

.
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Continued Fraction Expansions of Irrational Numbers

• We can see that
√
2 = [1, 2, 2, 2, . . .] from

√
2 = 1 + (

√
2− 1) = 1 +

1

1 +
√
2
= 1 +

1

2 + (
√
2− 1)

= · · · .

• What is the number of the form x = [1, 1, 1, . . .] ? Since

x = [1, 1, 1, . . .] = 1 +
1

1 +
1

. . .

= 1 +
1
x
,

we have x2 = x + 1, thus x =
1 +

√
5

2
. This is the golden number.

Theorem 2
The map

Z× NN −→ R \Q, (an)
∞
n=0 &→ [a0, a1, a2, . . .]

is a bijection.
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Quadratic Irrationals

Definition 3
An irrational number ω is called quadratic if ω is a root of a quadratic equation

ax2 + bx + c = 0 with integer coefficients. The other root ω′ of the equation is

called the conjugate of ω.

e.g. • ω =
√
2 ⇒ ω′ = −

√
2. • ω = 1+

√
5

2 ⇒ ω′ = 1−
√
5

2 .

Theorem 4 (Lagrange)

Let ω = [a0, a1, . . .] be an irrational number. Then the followings are equivalent:

ω is a quadratic irrational.

ω = [a0, a1, . . .] is (altimately) periodic, i.e. ∃k ∈ Z≥0, l ∈ N s.t.

ω = [a0, . . . , ak , ak+1, . . . , ak+l ].

e.g. • [4, 2, 3, 7, 3, 7, 3, 7, , . . .] = [4, 2, 3, 7] = [4, 2, 3, 7, 3].

•
√
2 = [1, 2]. • 1+

√
5

2 = [1]. •
√
7 = [2, 1, 1, 1, 4]. • [1, 1, 1, 4] = 2+

√
7

3 .
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Action of GL(2,Z) on R ∪ {∞}

GL(2,Z) :=
{
A =

(
a b

c d

)
| a, b, c , d ∈ Z, detA = ±1

}
: unimodular group.

SL(2,Z) := {A ∈ GL(2,Z) | detA = 1}: modular group.

The action GL(2,Z) ! R̂ := R ∪ {∞} is defined as:

A · x :=
a x + b

c x + d
, where A =

(
a b

c d

)
∈ GL(2,Z) and x ∈ R̂.

Note that A · x = (−A) · x and (AB) · x = A · (B · x).

Lemma 5

For every x ∈ R, [a0, a1, · · · , an, x ] =
(

a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
· x.

(Proof)

(
an 1

1 0

)
· x = an +

1
x .

(
an−1 1

1 0

)(
an 1

1 0

)
· x =

(
an−1 1

1 0

)
·
(
an +

1
x

)
= an−1 +

1

an +
1
x

, and so

on.
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Equivalent Relation, Periods

Definition 6 (Equivalent reration)

Let ω, η be quadratic irrationals. We define ω ∼ η iff ∃A ∈ GL(2,Z) s.t. η = A ·ω.

Lemma 7
Every quadratic irrational ω = [a0, . . . , ak , ak+1, . . . , ak+l ] is equivalent to a purely

periodic one η = [ak+1, . . . , ak+l ].

e.g. For ω = [4, 2, 1, 2, 3], set η = [1, 2, 3]. Then

ω = [4, 2, η] =

(
4 1

1 0

)(
2 1

1 0

)
· η =

(
9 4

2 1

)
· η

Thus [4, 2, 1, 2, 3] ∼ [1, 2, 3] ∼ [2, 3, 1] ∼ [3, 1, 2].

• When ω ∼ [a0, a1, . . . , ak ], we define the period of ω by the sequence

⟨a0, a1, . . . , ak⟩ determined up to cyclic permutations.

e.g. When ω = [4, 2, 1, 2, 3], the period of [ω] is ⟨1, 2, 3⟩ = ⟨2, 3, 1⟩ = ⟨3, 1, 2⟩.
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Purely Periodic Quadratic Irrationals

Proposition 8
Let ω be a quadratic irrational. Then the followings are equivalent:

ω is purely periodic, i.e. ω = [a0, a1, . . . , ak ].

ω is reduced, i.e. ω > 1 and −1 < ω′ < 0.

e.g. For ω = [1, 2], we have

ω = [1, 2,ω] =

(
1 1

1 0

)(
2 1

1 0

)
· ω =

(
3 1

2 0

)
· ω =

3ω + 1

2ω + 1
.

Thus ω(2ω + 1) = 3ω + 1 ⇔ 2ω2 − 2ω − 1 = 0. Hence ω = 1+
√
3

2 , ω′ = 1−
√
3

2 .

Corollary 9

Let ω = [a0, a1, . . . , ak ] and put A :=

(
a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
ak 1

1 0

)
.

Then we have A · ω = ω and A · ω′ = ω′.

A is a generator of Stab(ω) := {M ∈ GL(2,Z) | M · ω = ω}.
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Hyperbolic Geometry (The upper half-plane model)

The upper half-plane model of the hyperbolic plane :

H2 = {z = x + iy ∈ C | y > 0} with ds2 = dx2+dy2

y2 . Note that ∂∞H2 = R̂.
• The geodesics in H2 are semicircles or straight lines orthogonal to R.
• The action GL(2,Z) ! R̂ extends to the isometric action GL(2,Z) ! H2 as

A · z =

(
a b

c d

)
· z :=

⎧
⎪⎪⎨

⎪⎪⎩

a z + b
c z + d

if detA = 1,

a z + b
c z + d

if detA = −1.

• Two rational numbers p
q ,

r
s are called neighbors if ps − qr = ±1. Joining all

neighbors by geodesics in H2, we obtain the Farrey triangulation F of H2. The

action of GL(2,Z) on H2 preserves the Farrey triangulation.
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Hyperbolic Geometry (The unit disk model)

The unit disk model of the hyperbolic plane :

D2 = {z ∈ C | |z | < 1} with ds2 = |dz|2
(1−|z|2)2 . The map

Φ : H2 → D2; z .→ i
z − i

z + i

is an isometry. From now on, we will identy D2 with H2 via Φ.
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Generators of SL(2,Z) and GL(2,Z)

• Let L =

(
1 1

0 1

)
, R =

(
1 0

1 1

)
∈ SL(2,Z). Then SL(2,Z) = ⟨L,R⟩.

Note that L · z = z + 1 and R · z = z/(z + 1).

• Let U =

(
−1 0

0 1

)
, V =

(
−1 1

0 1

)
, W =

(
0 1

1 0

)
∈ GL(2,Z).

Then GL(2,Z) = ⟨U,V ,W ⟩ = ⟨L,W ⟩.
Note that U · z = −z , V · z = −z + 1 and W · z = 1/z .

The domain ∆ := {z ∈ H2 | 0 ≤ Re z ≤ 1/2, |z | > 1} is a fundamentar domain of

GL(2,Z) ! H2.
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Stabilizers of Purely Periodic Irrationals

Let ω = [a0, a1, . . . , an] and put A :=

(
a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
.

Recall that A · ω = ω, and that A generates Stab(ω).

Since

(
a 1

1 0

)
= LaW , A can be written as a ward in L and W :

(⋆) A = La0WLa1W · · · LanW .

Furthermore, since LW = WR and W 2 = I , A can also be written as a ward in

L, R (and W ):

(⋆⋆) A =

{
La0Ra1 · · · Lan−1Ran (n : odd)

La0Ra1 · · · Lan−2Ran−1LanW (n : even)
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Periods and Cutting Sequences

Proposition 10

Let ω be a purely periodic quadratic irrational and γ a geodesic joining ω′ to ω.

Then the followings are equivalent:

ω = [a0, a1, . . . , an].

The cutting sequence of γ across F is

· · · Lan−1Ran | La0Ra1La2Ra3 · · ·

where L,R stand for “left” and “right”, respectively.

e.g.

For ω = [3, 1, 2], the cutting sequence is · · ·R3LR2 | L3RL2R3 · · · .
For ω = [3, 2], the cutting sequence is · · · L3R2 | L3R2L3 · · · .
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Periods and Cutting Sequences

Proposition 11 (Reprint of Prop. 10)

ω = [a0, a1, . . . , an] ⇐⇒ The cutting sequence of γ across F is

· · · Lan−1Ran | La0Ra1La2Ra3 · · · where L,R stand for “left” and “right”,

respectively.

For ω = [3, 2], the cutting sequence is · · · L3R2 | L3R2L3 · · · .
Note that ω = [3, 2] = [3, 2,ω] = L3WL2W · ω = 3 +

1

2 + 1
ω

.
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Galois’ Theorem

Theorem 12 (Galois)

For ω = [a0, a1, . . . , an], we have − 1

ω′ = [an, . . . , a1, a0].

• ωω′ = −1 ⇐⇒ (a0, . . . , an) is a palindrome. • ω′ ∼ [an, . . . , a1, a0].

(Proof of Thm) For the geodesic γ from ω′ to ω, the cutting sequence is

· · · Lan−1Ran |La0Ra1 · · · . If we apply J · z = −1/z on H2 (where J = L−1RL−1),

J(γ) with its orientation reversed is a geodesic from −1/ω to −1/ω′ with the

cutting sequence · · · La1Ra0 |LanRan−1 · · · .
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Billiards in ∆

Let ω ∼ [a0, a1, . . . , an], and γ a geodesic in H2 joining ω′ to ω. Since elements in

Stab(ω) map γ to itself, γ descends to a closed trajectory of a billiard Bω in the

orbifold ∆ = H2/GL(2,Z):

Bω :=

⎛

⎝
⋃

A∈GL(2,Z)
A · γ

⎞

⎠ ∩∆.
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Examples of Billiards
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Billiards and Periods

non-orientable orientable

passes i doesn’t pass i

once twice

e.g. [1, 2, 3, 2, 1] e.g. [1, 2, 3, 3, 2, 1] e.g. [1, 2, 3, 2, 1, 2] e.g. [1, 2, 3, 1]
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Billiards and Periods

Definition 13
Let ω be a quadratic irrational.

ω is called palindromic if the period of ω has an palindromic expression.

ω is called symmetric if the period of ω is a union of (at most) two

palindromes. (There is a symmetric axis if the period is arranged on a circle.)

ω = [4, 1, 1, 3] is parindromic, since its period is ⟨1, 1, 3⟩ = ⟨1, 3, 1⟩.
ω = [1, 3, 1, 4, 5, 4] is symmetric but not palindromic.
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Billiards and Periods

Proposition 14
Let ω be a quadratic irrational.

Bω is non-orientable ⇐⇒ ω is symmetric.

Bω passes i ∈ ∂∆ ⇐⇒ ω is palindromic.

Furthermore, Bω passes i twice ⇐⇒ the length of the period of ω is even.

Suppose that ω ∼ [a0, a1, . . . , an]. Then ω′ ∼ [an, . . . , a1, a0].

Bω is non-orientable ⇐⇒ ω ∼ ω′

⇐⇒ [a0, a1, . . . , an] ∼ [an, . . . , a1, a0]

⇐⇒ (a0, a1, . . . , an) equals to a cyclic permutation of (an, . . . , a1, a0)

⇐⇒ ω is symmetric.

Bω passes i ∈ ∂∆ ⇐⇒ ω ∼ η s.t. ηη′ = −1 (=⇒ ω ∼ ω′)

⇐⇒ ∃k s.t. [ak , ak+1, . . . , ak−1] = [ak−1, . . . , ak+1, ak ]

⇐⇒ ω is palindromic.
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Billiards Passing the Corners

Bω passes the corner i ∈ ∂∆ ⇐⇒ ω ∼ η s.t. ηη′ = −1

⇐⇒ ω is equivalent to a solution of ax2 + bx − a = 0.

Bω passes the corner 1+i
√
3

2 ∈ ∂∆ ⇐⇒ ω is equivalent to a solution of

ax2 − 2(a+ c)x + c = 0. For example, ω = [1, 2], [1, 4, 1, 1] satisfy this

condition. Are there any condition on the cycle of ω?
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From Billiards to Periods (The Morse Method)
We rabel the sides of ∂∆ by U,V and W .

• Let Bω be the billiard of a quadratic irrational ω.

• Starting from a point in U ∩ Bω and following Bω.

Each time the billiard intersects the sides U, V , or W ,

add that letter to the right.

(When Bω pass i , we add WU = UW , and when Bω pass
1+i

√
3

2 , we add WVW = VWV . )

• We obtain a ward g(ω) in U,V and W when one

return to the starting point.

• Using WU = UW , VWV = WVW and L = VU, we

can translate g(ω) into a word

h(ω) = La0WLa1W · · · LanW in L and W .

Then the period of ω is ⟨a0, a1, . . . , an⟩.

e.g. g(ω) = VUVUVUWVWUVUVWU

→ VUVUVUWVUWVUVUW

→ h(ω) = LLLWLWLLW → ⟨3, 1, 2⟩ = ⟨1, 2, 3⟩
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From Billiards to Periods (The Morse Method)

e.g. For ω = [1, 3],

g(ω) = VUVUVUVWVU = VUVUVUWVWU = VUVUVUWVUW

h(ω) = LLLWLW → ⟨3, 1⟩ = ⟨1, 3⟩.
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From Billiards to Periods (The Morse Method)
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Markov Spectra

For a modular billiard B , let λ(B) be twice of the maximal height of B . The set

M := {λ(B) | B is a modular billiard}

is called the Markov spectrum. M ∩ (0, 3) is a monotone increasing sequence

{λ(Bωj ) | j ∈ N} s.t. limj→∞ Bωj = 3. Here ω1 = [1], ω2 = [2], ω3 = [2, 2, 1, 1],

ω4 = [2, 2, 1, 1, 1, 1], ω5 = [2, 2, 2, 2, 1, 1], ω6 = [2, 2, 1, 1, 1, 1, 1, 1] . . .

cf. N. Andersen and W.Duke, Markov spectra for modular billiards, Math. Ann.

373 (2019),1151–1175.
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