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Introduction

e A={zeC|0<z<1/2 |z| >1}: a fundamental domain of GL(2,Z) ~ H?.
e An oriented geodesic ~ in H?

~~ The trajectory of a modular billiard (or billiard) B in A = H?/GL(2,Z).

e The billiard B is closed

<= end points of 7 are quadratic irrational w and its conjugate w’

<= w is (equivalent to) a purely periodic continued fraction [ag, a1, - - - ax)

We want to understand the relation “billiard «~ period.”

There are lot of references based on SL(2,7Z), but a few on GL(2,Z).

b Y
L~ e w= [3.2]

h
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Continued Fractions

Definition 1
Continued fraction is a rational number of the form
[a0, a1, ..., an] == a0 + . (20 € Z,a1,a,...,a, €NN)
a +
1
an—1+ —
e.g.
[1,2,3,4] =1+ PRI S T  R
e B 1 2+ 4 EN 30 30°
2+ 45
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Continued Fraction Expansions of Irrational Numbers

e We can see that v/2 = [1,2,2,2,...] from

1 1
ﬁZH(ﬁ_l):Hm:Hm:””

e What is the number of the form x =[1,1,1,...]? Since

x=[1,1,1,..]=1+

=14 =,
X

1+ —

we have x? =x+1, thus x =

1++5
2

. This is the golden number.

The map

ZxNY — R\ Q, (an)n2o + [a0, a1, a2, - . .]

is a bijection.
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Quadratic Irrationals

Definition 3
An irrational number w is called if w is a root of a quadratic equation

ax? 4 bx + ¢ = 0 with integer coefficients. The other root w’ of the equation is

called the of w.

eg ow=12 = w =—-V2. .w:1+2\/3:>w/:172\/§_

Theorem 4 (Lagrange)

Let w = [ao, a1, ...] be an irrational number. Then the followings are equivalent:
@ w is a quadratic irrational.

@ w = [ag, a1, ...] is (altimately) , i.e. 3k € Z>o, | € N sit.

w = [ao, ey dky k41, - - .,ak+/].

eg. ©[4,2,3,7,3,7,3,7,,..]=[4,2,3,7] = [4,2,3,7,3].

e V2=[1,2]. o5 1] o7=[2,1,1,1,4] o[I,1,1,4 =27
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Action of GL(2,7Z) on RU {00}

GL(2,Z) := {A = ( 2 5 ) | a,b,c,d € Z, det A= :I:l}: unimodular group.
c

SL(2,Z) :={A € GL(2,Z) | det A = 1}: modular group.
The action GL(2,Z) ~ R := R U {oo} is defined as:

ax-+b
cx+d’

Note that A-x = (—A)-x and (AB)-x = A-(B - x).

X =

where A = ( a b > € GL(2,7) and x € R.

c

1 1 n 1
ForeveryxER,[807317"'a3nax]:(alo 0)(311 o><al 0>.X'

an 1
(Proof) ( ) 0>~x:an+)1(.

ap—1 1 a, 1 an—1 1 1 1
< 1 0>< 1 0>X_( 1 0>.(an+x)_an—1+an_'_)];yandso

on.
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Equivalent Relation, Periods

Definition 6 (Equivalent reration)

Let w,n be quadratic irrationals. We define w ~ 7 iff 3A € GL(2,Z) st. n=A-w.

Every quadratic irrational w = [ag, . .., ak, @k+1, - - -, ak+1| IS equivalent to a purely
periodic one n = [@ks1, -+, 3k+i)-

e.g. Forw=1[4,2,1,2,3], set n =[1,2,3]. Then

cwaa- (1) (3 3)- (3 1)

Thus [4,2,1,2,3] ~ [1,2,3] ~ [2,3,1] ~ [3,1,2].

e When w ~ [ag, a1, - - -, ax], we define the period of w by the sequence
(a0, a1, - . ., ak) determined up to cyclic permutations.

e.g. When w=1[4,2,1,2,3], the period of [w] is (1,2,3) = (2,3,1) = (3,1,2).
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Purely Periodic Quadratic Irrationals

Proposition 8

Let w be a quadratic irrational. Then the followings are equivalent:
o wis , i.e. w=[a0, a1, -, 3]

o wis e, w>1and -1 <w <0.

e.g. Forw =1[1,2], we have

11 2 1 3 1 3w+1
w=[12,w] = cw = cw = .
1 0 1 0 2 0 2w+1

Thus w(2w+1) =3w + 14 2w? — 2w —1=0. Hencew:”—z‘/g w =123,

Corollary 9

S a 1 a 1 a1
L = A= .
etw = [ao, a1, ..., ak| and put ( 1 0 ) ( 10 ) ( Loy )

Then we have A-w =w and A-w' = w'.

A'is a generator of Stab(w) := {M € GL(2,Z) | M - w = w}.
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Hyperbolic Geometry (The upper half-plane model)

The upper half-plane model of the hyperbolic plane :

H? = {z=x+iy € C|y >0} with ds> = 25 Note that 9, H? = R.

e The geodesics in H? are semicircles or straight lines orthogonal to R.

e The action GL(2,Z) ~ R extends to the isometric action GL(2,Z) ~ H? as

3z+b a1,
a b CZ+d
A.z—( d>.z:—
C —
AZ+b e e A— 1,
cz+d

e Two rational numbers %, ¢ are called neighbors if ps — gr = 1. Joining all
neighbors by geodesics in H?, we obtain the Farrey triangulation F of H2. The
action of GL(2,Z) on H? preserves the Farrey triangulation.
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Hyperbolic Geometry (The unit disk model)

The unit disk model of the hyperbolic plane :
2
D? = {z € C||z| < 1} with ds? = %. The map

z—1

o H? = D?* z—i

is an isometry. From now on, we will identy D? with H? via ®.

W
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Generators of SL(2,7Z) and GL(2,7Z)

1 1
Note that L-z=z+1land R-z=2z/(z+1).

. LetU:(_l 0),V:(_1 1>,W:(0 1>6GL(2,Z).
0 1 0 1 1 0

Then GL(2,Z) = (U, V, W) = (L, W).

Note that U-z=—-Z, V-z=—-Z+1land W-z=1/Z.

The domain A := {z € H? | 0 < Rez < 1/2, |z| > 1} is a fundamental domain of
GL(2,Z) ~ H2.

. LetL—<(1) 1),R_(1 (1)>ESL(2,Z). Then SL(2,Z) = (L, R).
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Stabilizers of Purely Periodic Irrationals
_ L ao 1 ai 1
Letw—[ao,al,...,an]andputA.—( ) 0)( ) 0> <

Recall that A-w = w, and that A generates Stab(w).

Since ( i (1) ) = [?W, A can be written as a ward in L and W:

(+)  A=LOWLAW... "W,

Furthermore, since LW = WR and W2 = I, A can also be written as a ward in
L, R (and W):

[ R ... [2—1Ran n : odd
() A
* =

[2R™ ... [%-2R%-1[3\/ (n: even)
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Periods and Cutting Sequences

Proposition 10

Let w be a purely periodic quadratic irrational and ~ a geodesic joining w' to w.
Then the followings are equivalent:

o w=[a,a1,--, ]

e The of v across F is

oo [3n-1 RN

[®R¥[ZR% ...

where L, R stand for “left” and ‘“right”, respectively.

e.g.

e For w = [3,1,2], the cutting sequence is - -- R3LR? | L3RL?R3--- .,
e For w = [3,2], the cutting sequence is - -- L3R? | [3R2[3. .. <




Periods and Cutting Sequences

Proposition 11 (Reprint of Prop. 10)

w = [a0, a1, .--,an] <= The cutting sequence of -y across F is
ceo 1R | JBORM| 2R3 ... where L, R stand for “left” and “right”,

respectively.

For w = [3,2], the cutting sequence is - -- L3R? | [3R?[3 .. ..

- 1
Note that w = [3,2] = [3,2,w] = LEWLW -w =3 + i T

w

14 /26



Galois’ Theorem

Theorem 12 (Galois)

. 1 .
For w = [ao, a1, - - -, an], we hav - = [@n, -+, a1, 40

o ww =-1 <= (ap,...,a,) is a palindrome. o W' ~ [3,,---, 31, a0l

(Proof of Thm) For the geodesic vy from w’ to w, the cutting sequence is

oo L-iRa|[oRA ... |f we apply J-z = —1/z on H? (where J = L7'RL™!),

J(7y) with its orientation reversed is a geodesic from —1/w to —1/w’ with the

cutting sequence - - - LB R¥|[3 R3n—1 ... O
I S vo

s ﬂC&J : [ 3,1.2.t} PRV

=1
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Billiards in A

Let w ~ [0, a1,---, an), and 7y a geodesic in H? joining w’ to w. Since elements in
Stab(w) map 7 to itself, v descends to a closed trajectory of a billiard B, in the
orbifold A = H2/GL(2,Z):

B, = U A~]na
ACGL(2,2)

|
A
AN

143
: 2
w
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Examples of Billiards

%

(WERY (LH—] 0451 (il

[l‘s](wl [15]
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Billiards and Periods

non-orientable orientable
passes i doesn't pass i
once twice
cg [1.2.3,21] | eg [1.2.3.3,21] | g [L23.212 | eg [L23 1]
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Billiards and Periods

Definition 13

Let w be a quadratic irrational.
@ w is called palindromic if the period of w has an palindromic expression.

@ w is called symmetric if the period of w is a union of (at most) two
palindromes. (There is a symmetric axis if the period is arranged on a circle.)

w=1[4,1,1,3] is palindromic, since its period is (1,1,3) = (1,3,1).
w=1[1,3,1,4,5,4] is symmetric but not palindromic.

p«xliv\o{vow.ic_
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Billiards and Periods

Proposition 14

Let w be a quadratic irrational.
e B, is non-orientable <— w is symmetric.

@ B, passes i € A <= w is palindromic.
Furthermore, B,, passes i twice <= the length of the period of w is even.

Suppose that w ~ [ag, a1, .-, an]- Then w' ~ [3,,- -, 31, 40

@ B, is non-orientable <= w ~ W’

<~ |d0,d1,---,dn] ~ |a@n,---,4d1,4d0|
<= (a0, a1,...,an) equals to a cyclic permutation of (a,,..., a1, a)
<= w is symmetric.

@ B, passes i €A <= w~nst. g =-1 (= w~w)

<= dk s.t. [8k, @k+15 -+ -5 dk—1] = |8k—=1,- - -, Ak+1, dk|
<= w is palindromic.
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Billiards Passing the Corners

@ B, passes the corner i € A <— w~nst. gy =-1
<= w is equivalent to a solution of ax” + bx — a — 0.

@ B, passes the corner 1+’T‘/§ € 0A <= w is equivalent to a solution of
ax? —2(a+ c)x +c = 0. For example, w = [1,2], [1,4, 1, 1] satisfy this
condition. Are there any condition on the cycle of w?
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From Billiards to Periods (The Morse Method)

We rabel the sides of 0A by U,V and W.
e Let B, be the billiard of a quadratic irrational w.

e Starting from a point in U N B,, and following B,,.

Each time the billiard intersects the sides U, V, or W,

add that letter to the right.

(When B, pass i, we add WU = UW, and when B,, pass U V
L3 e add WYW = VWV, )

e We obtain a ward g(w) in U,V and W when one

return to the starting point.

e Using WU = UW, VWV = WVW and L = VU, we

can translate g(w) into a word St
h(w) = LWL W --- LW in L and W. W
Then the period of w is (ag, a1, . - ., an).

eg. g(w) = VUVUVUWV WU VUV WU
— VUVUVUWV UW VUV UW
— h(w) = LLLWLWLLW — (3,1,2) = (1,2,3)
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From Billiards to Periods (The Morse Method)

e.g. Forw=1[1,3],
g(w) = VUWUWUYWV U = VUVUVUWVW U = VUVUVUWVUW
h(w) = LLLWLW — (3,1) = (1,3).

U®| A |Ves) Vus| VOV v =y | e

//‘7’/—'———__—_\“‘\\\\\ L
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From Billiards to Periods (The Morse Method)

. , y
Vu Vw U VWVU Wvwu wvy
_ =W Y wU s WVUW = WL
L VUW W Vuw = WLw \
< LW =wWLW
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Markov Spectra

For a modular billiard B, let A(B) be twice of the maximal height of B. The set
M = {\(B) | B is a modular billiard}

is called the Markov spectrum. M N (0,3) is a monotone increasing sequence
{)\(Bwj) |_j S N} s.t. |Im‘,_>Oo Bwj = 3. Here wy; = [I] Wy = [5], w3 = [2 2,1 ]
ws =12,2,1,1,1,1], ws = [2,2,2,2,1,1], we = [2,2,1,1,1,1,1,1]...

‘Sgo, Egob» Ygtﬂ; Ei»¢ EQJQ; Y%Coé

P2 e Z £

cf. N. Andersen and W. Duke, Markov spectra for modular billiards, Math. Ann.
373 (2019),1151-1175.
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