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Growth rates of hyperbolic Coxeter groups

1 Growth rates of hyperbolic Coxeter groups
Coxeter systems

S : a finite set
M = (mr ,s) : |S |× |S | symmetric matrix satisfying
ms,s = 1,mr ,s = ms,r ∈ N≥2 ∪ {∞} (Coxeter matrix)
W = W (M) = ⟨S | (rs)mr,s (r , s ∈ S)⟩ (Coxeter group)
(W , S) the Coxeter system
The Coxeter diagram of (W , S) is the non-oriented graph whose vertices
correspond to S ; their vertices r and s are connected by an edge with
weight mr ,s if mr ,s ≥ 3. We also omit the weight mr ,s = 3.
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Growth rates of hyperbolic Coxeter groups

A hyperbolic Coxeter polytope is the intersection of closed half spaces in
Hn

P = ∩k
i=1H

−
i ⊂ Hn

whose dihedral angles are of the form π/n, (n ∈ N≥2 ∪ {∞}).
Suppose that S is the set of facets of P . Then P is represented by its
Coxeter diagram. A geometric Coxeter group (W , S) is generated by the
set of reflections with respect to facets of P .

(a) Coxeter polytope in H3 (b) Coxeter diagram
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Growth rates of hyperbolic Coxeter groups

Growth functions of Coxeter systems

ℓ(W ,S) : W → N ∪ {0} the length function

A(W ,S)
n = {g ∈ W | ℓ(W ,S) = n}

a(W ,S)
n = |A(W ,S)

n |
fS(t) =

∑
n∈N∪{0} a

(W ,S)
n tn ∈ Z[[t]] the growth function

The growth rate of (W , S)

τ(W ,S) = lim sup
n→∞

n
√
a(W ,S)
n

= 1/RS (RS : the radius of convergence of fS(t)).

KOMORI (Waseda) Growth Friday 1 November, 2024 5 / 22



Growth rates of hyperbolic Coxeter groups

Theorem (Solomon 66)
The growth function fS(t) of an irreducible finite Coxeter group (W , S)
can be written as fS(t) =

∏k
i=1[mi + 1] where [n] := 1 + t + · · ·+ tn−1

and {m1,m2, · · · ,mk} is the set of exponents of (W , S).

Group Exponents Growth function
An 1, 2, · · · , n − 1, n [2, 3, · · · , n, n + 1]
Bn 1, 3, · · · , 2n − 3, 2n − 1 [2, 4, · · · , 2n − 2, 2n]
Dn 1, 3, · · · , 2n − 3, n − 1 [2, 4, · · · , 2n − 2][n]

G (m)
2 1,m − 1 [2,m]
F4 1, 5, 7, 11 [2, 6, 8, 12]
H3 1, 5, 9 [2, 6, 10]
H4 1, 11, 19, 29 [2, 12, 20, 30]
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Growth rates of hyperbolic Coxeter groups

Theorem (Steinberg 68)
Let (WT ,T ) be the Coxeter subgroup of (W , S) generated by T ⊆ S , and
let its growth function be fT (t). Set F = {T ⊆ S : WT is finite }. Then

1

fS(t−1)
=

∑

T∈F

(−1)|T |

fT (t)
.

That is, the growth function of (W , S) is a rational function.
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Growth rates of hyperbolic Coxeter groups

Example

type of subgroup growth function number
B3 [2, 4, 6] 2

A2 × A1 [2, 2, 3] 1
A2 [2, 3] 3
B2 [2, 4] 1

A1 × A1 [2, 2] 2
A1 [2] 4
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Growth rates of hyperbolic Coxeter groups

Theorem (Steinberg 68)
Let (WT ,T ) be the Coxeter subgroup of (W , S) generated by T ⊆ S , and
let its growth function be fT (t). Set F = {T ⊆ S : WT is finite }. Then

1

fS(t−1)
=

∑

T∈F

(−1)|T |

fT (t)
.

1

fS(t−1)
=

−2

[2, 4, 6]
+

−1

[2, 2, 3]
+

3

[2, 3]
+

1

[2, 4]
+

2

[2, 2]
+

−4

[2]
+ 1.

fS(t) =
(1 + t)3(1 + t2)(1− t + t2)(1 + t + t2)

(t − 1)(t7 + t6 + 2t5 + 2t4 + t3 + t2 − 1)

= 1 + 4t + 10t2 + 21t3 + 40t4 + 73t5 + · · ·
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Growth rates of hyperbolic Coxeter groups

1
fS (t−1) = Q̃(t)/P̃(t) ⇒ fS(t) = P(t)/Q(t)

where P(t) = tnP̃(1/t), Q(t) = tnQ̃(1/t).
Hence R = 1/τ is the smallest positive root of Q(t).
Since Q̃(t) is monic, τ > 1 is an algebraic integer.
P(t) is a product of cyclotomic polynomials.

For compact Coxeter polyhedron P ,
fS(t) = P(t)/Q(t) is reciprocal (i .e. fS(t−1) = fS(t)) when dim P is even,
while
fS(t) is antireciprocal (i .e. fS(t−1) = −fS(t)) when dim P is odd
(Serre 71).
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Growth rates of hyperbolic Coxeter groups

A real algebraic integer τ > 1 is called:
(1) a Salem number if τ−1 is a conjugate of τ and all conjugates of τ
other than τ and τ−1 lie on the unit circle.
(2) a Pisot number if all algebraic conjugates of τ other than τ lie in the
open unit disk.
(3) a Perron number if all of whose conjugates have strictly smaller
absolute values. (i.e. Salem, Pisot ⇒ Perron)
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!1.0
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0.5

1.0

(c) Salem (d) Pisot
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!0.5

0.5

1.0

(e) Perron
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Growth rates of hyperbolic Coxeter groups

Growth rates for low dimensional cases

Theorem (Cannon-Wagreich 92, Parry 93)
The growth rates of cocompact 2 and 3-dimensional hyperbolic Coxeter
groups are Salem numbers. In practice, Parry showed that the
denominator polynomial Q(x) of the growth function of cocompact 2 and
3-dimensional hyperbolic Coxeter group is a product of distinct irreducible
cyclotomic polynomials with exactly one Salem polynomial.

Theorem (Floyd 92)
The growth rates of cofinite 2-dimensional hyperbolic Coxeter groups are
Pisot numbers.

Theorem (Yukita 18)
The growth rates of cofinite 3-dimensional hyperbolic Coxeter groups are
Perron numbers.
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Growth rates of hyperbolic Coxeter groups

Conjectures (Kellerhals and Perren 11)
Let (W , S) be a Coxeter group acting on Hn cocompactly.

1 For n even, fS(t) has precisely
n
2 poles 0 < t1 < · · · < t n

2
< 1 in the

interval (0, 1).

2 For n odd, fS(t) has a pole at 1 and precisely n−1
2 poles

0 < t1 < · · · < t n−1
2

< 1 in the interval (0, 1).

In both cases, all poles are simple, and the non-real poles are contained in
the annulus of radius ti for some i ∈ {1, · · · , [n2 ]}.
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2-Salem numbers as growth rates and spectral radii

2-Salem numbers as growth rates of 4-dimensional groups

Definition (Samet 52, Kerada 95)
A 2-Salem number is a real algebraic integer α > 1, such that α has one
conjugate root β > 1 while other conjugate roots ω satisfy |ω| ≤ 1 and at
least one of them is on the unit circle. Call the minimal polynomial of α a
2-Salem polynomial. As in the case of a Salem polynomial, a 2-Salem
polynomial is a palindromic polynomial of even degree. As a consequence,
α−1 and β−1 are also roots and all roots different from α,α−1,β,β−1 lie
on the unit circle.
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2-Salem numbers as growth rates and spectral radii

Construction of a truncated 4-dimensional simplex

5

5

5 5

G (− cos θij) =

⎛

⎜⎜⎜⎜⎝

1 − cosπ/5 0 0 0
− cosπ/5 1 −1/2 0 0

0 −1/2 1 − cosπ/5 0
0 0 cosπ/5 1 −1/2
0 0 0 −1/2 1

⎞

⎟⎟⎟⎟⎠

detG < 0 ⇒ the signature of G = (4, 1) ⇒ realizable in H4
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2-Salem numbers as growth rates and spectral radii

5

5

5 5
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2-Salem numbers as growth rates and spectral radii

5
5

5

(f) glued Coxeter diagram
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2-Salem numbers as growth rates and spectral radii

Gluing formula (T. Zehrt and C. Zehrt 11)
Consider two Coxeter n-polytope P1 and P2 having the same orthogonal
facet F which is a Coxeter (n-1)-polytope, and let their growth functions
be W1(t),W2(t) and F (t) respectively. Then the growth function
W1 ∗P0 W2(t) of the Coxeter polytope obtained by gluing P1 and P2 along
F is given by

1

W1 ∗F W2(t)
=

1

W1(t)
+

1

W2(t)
+ (

t − 1

1 + t
)

1

F (t)

P P

F

1 2

(g) gluing aong F
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2-Salem numbers as growth rates and spectral radii

Coxeter garlands (T. Zehrt and C. Zehrt 11)

Let Gn be the Coxeter polytope constructed from n copies of G by (n-1)-
gluings along orthogonal facets of G . Then the growth function of Gn is
equal to [2, 2, 5, 6](t5 + 1)/Dn(t) where

Dn(t) = t16 − 2(n + 1)t15 + t14 + (n − 1)t13 + t12 + nt11

+(n − 1)t10 + 2t9 + 2(n − 1)t8 + 2t7 + (n − 1)t6

+nt5 + t4 + (n − 1)t3 + t2 − 2(n + 1)t + 1.

They showed that Dn(t) has 2 reciprocal pairs of positive real zeros and all
the other zeros locate on the unit circle. Hence Coxeter garlands seem to
have 2-Salem numbers as their growth rates. But it might be possible that
it factorizes as a product of cyclotomic polynomials and Salem
polynomials...
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2-Salem numbers as growth rates and spectral radii

Theorem 2.1

For any n ∈ N, Dn(t) is a 2-Salem polynomial. Therefore 4-dimensional
Coxeter garlands always have 2-Salem numbers as their growth rates.

Idea of the proof

The Mahler measure of f (z) =
∑

0≤k≤d akx
k = ad

∏d
k=1(z − zk) is

M(f ) = |ad |
∏

1≤k≤d

max{1, |zk |}.

Then

|ak | ≤
(
d

k

)
M(f ).

Hence for fixed d ∈ N and fixed M > 0, there are only finitely many
polynomials f (z) ∈ Z[z ] with deg(f ) ≤ d and M(f ) ≤ M.
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2-Salem numbers as growth rates and spectral radii

T. Zehrt and C. Zehrt 11: Theorem 2
The real roots 1 < αn < βn of Dn(t) of degree 16 satisfy

1 < αn < 2 < 2n + 1 < βn < 2n + 2.

In practice Boyd and Mossingohoff classified Z-polynomials with
deg(f ) ≤ 16 and M(f ) < 2 all of which do not factorize Dn(t). Therefore
Dn(t) is irreducible over Z.
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2-Salem numbers as growth rates and spectral radii

Lists of Polynomials with Small Mahler Measure (Mossinghoff)

6   1�401268367�3�85   1-\@2-\@3-\@4\@6
6   1�50613567�55384   1-\-\@3-\@5\@6
6   1�5560301�132268   1-\-\@2\@3-\@4-\@5\@6
6   1�58234718368046   1-\@2-2*\@3-\@4\@6
6   1�63557312��2222   1-2*\2*\@2-3*\@32*\@4-2*\@5\@6
6   1�7816435�860800   1-\-\@2-\@4-\@5\@6
6   1�83107582510231   1-2*\\@3-2*\@5\@6
6   1��4685626827188   1-\-\@2-\@3-\@4-\@5\@6
6   1��63553038�8882   1-2*\-\@23*\@3-\@4-2*\@5\@6
6   1��748187082�771   1-2*\\@2-2*\@3\@4-2*\@5\@6
6   1��877�316684622   1-2*\@2-3*\@3-2*\@4\@6
6   2�0424�0533�4081   1-3*\3*\@2-3*\@33*\@4-3*\@5\@6
6   2�1�56467364�222   1-\-\@2-3*\@3-\@4-\@5\@6
6   2�20113035058076   1-2*\-\@22*\@3-\@4-2*\@5\@6
6   2�225867�13�8338   1-3*\2*\@2-\@32*\@4-3*\@5\@6
6   2�25645514685613   1-2*\-\@3-2*\@5\@6
6   2�26844468522511   1-\-2*\@2-\@3-2*\@4-\@5\@6
6   2�38214865205606   1-4*\6*\@2-7*\@36*\@4-4*\@5\@6
6   2�3�62�574140���   1-2*\-2*\@3-2*\@5\@6
6   2�42122��5630770   1-3*\\@2\@3\@4-3*\@5\@6
6   2�45317002237�50   1-3*\2*\@2-2*\@32*\@4-3*\@5\@6
6   2�45�63365088�60   1-\-2*\@2-3*\@3-2*\@4-\@5\@6
6   2�47541210131401   1-3*\3*\@2-5*\@33*\@4-3*\@5\@6
6   2�50382260�70148   1-2*\-\@2-\@4-2*\@5\@6
6   2�51454252585576   1-2*\-3*\@3-2*\@5\@6
6   2�54204886300850   1-\-2*\@2-4*\@3-2*\@4-\@5\@6
6   2�6750��46332357   1-4*\@2-7*\@3-4*\@4\@6
6   2�6�311767304055   1-\-3*\@2-3*\@3-3*\@4-\@5\@6
6   2�7182458�30�27�   1-2*\-\@2-2*\@3-\@4-2*\@5\@6
6   2�72706�46010527   1-2*\-2*\@2\@3-2*\@4-2*\@5\@6
6   2�75146476230721   1-3*\2*\@2-4*\@32*\@4-3*\@5\@6
6   2�762�53�4334256   1-\-3*\@2-4*\@3-3*\@4-\@5\@6
6   2�76701�35053725   1-3*\\@2-\@3\@4-3*\@5\@6
6   2�78618�56786788   1-3*\2*\@3-3*\@5\@6
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