On the growth rates of hyperbolic 4-dimensional Coxeter polyhedra

Yohei Komori (Waseda University, Tokyo)

Geometry and Topology of Discrete Groups

Friday 1 November, 2024

Contents

- Growth rates of hyperbolic Coxeter groups
 - Growth functions of Coxeter systems
 - Growth rates for low dimensional cases
- 2-Salem numbers as growth rates of 4-dimensional cocompact hyperbolic Coxeter groups
 - Construction of a truncated 4-dimensional simplex
 - 2-Salem numbers as growth rates of Coxeter garlands

1 Growth rates of hyperbolic Coxeter groups Coxeter systems

S: a finite set $M = (m_{r,s}) : |S| \times |S|$ symmetric matrix satisfying $m_{s,s} = 1, m_{r,s} = m_{s,r} \in \mathbb{N}_{\geq 2} \cup \{\infty\}$ (Coxeter matrix) $W = W(M) = \langle S \mid (rs)^{m_{r,s}} (r, s \in S) \rangle$ (Coxeter group) (W, S) the Coxeter system The Coxeter diagram of (W, S) is the non-oriented graph whose vertices correspond to S; their vertices r and s are connected by an edge with weight $m_{r,s}$ if $m_{r,s} \geq 3$. We also omit the weight $m_{r,s} = 3$.

ヘロト ヘヨト ヘヨト

A hyperbolic Coxeter polytope is the intersection of closed half spaces in \mathbb{H}^n

$$P = \cap_{i=1}^k H_i^- \subset \mathbb{H}^n$$

whose dihedral angles are of the form π/n , $(n \in \mathbb{N}_{\geq 2} \cup \{\infty\})$. Suppose that S is the set of facets of P. Then P is represented by its Coxeter diagram. A geometric Coxeter group (W, S) is generated by the set of reflections with respect to facets of P.

Growth functions of Coxeter systems

$$\ell_{(W,S)} : W \to \mathbb{N} \cup \{0\} \text{ the length function} A_n^{(W,S)} = \{g \in W \mid \ell_{(W,S)} = n\} a_n^{(W,S)} = |A_n^{(W,S)}| f_S(t) = \sum_{n \in \mathbb{N} \cup \{0\}} a_n^{(W,S)} t^n \in \mathbb{Z}[[t]] \text{ the growth function} The growth rate of $(W, S)$$$

$$\tau_{(W,S)} = \limsup_{n \to \infty} \sqrt[n]{a_n^{(W,S)}}$$

= 1/R_S (R_S : the radius of convergence of f_S(t)).

KOMORI (Waseda)

æ

Theorem (Solomon 66) The growth function $f_S(t)$ of an irreducible finite Coxeter group (W, S)can be written as $f_S(t) = \prod_{i=1}^k [m_i + 1]$ where $[n] := 1 + t + \dots + t^{n-1}$ and $\{m_1, m_2, \dots, m_k\}$ is the set of exponents of (W, S).

Group	Exponents	Growth function
An	$1, 2, \cdots, n-1, n$	$[2, 3, \cdots, n, n+1]$
Bn	$1, 3, \cdots, 2n-3, 2n-1$	$[2, 4, \cdots, 2n-2, 2n]$
D _n	$1, 3, \cdots, 2n-3, n-1$	$[2, 4, \cdots, 2n-2][n]$
$G_2^{(m)}$	1, m - 1	[2, <i>m</i>]
F ₄	1, 5, 7, 11	[2, 6, 8, 12]
H ₃	1, 5, 9	[2, 6, 10]
H_4	1, 11, 19, 29	[2, 12, 20, 30]

Theorem (Steinberg 68) Let (W_T, T) be the Coxeter subgroup of (W, S) generated by $T \subseteq S$, and let its growth function be $f_T(t)$. Set $\mathcal{F} = \{T \subseteq S : W_T \text{ is finite }\}$. Then

$$\frac{1}{f_{\mathcal{S}}(t^{-1})} = \sum_{\mathcal{T}\in\mathcal{F}} \frac{(-1)^{|\mathcal{T}|}}{f_{\mathcal{T}}(t)}.$$

That is, the growth function of (W, S) is a rational function.

type of subgroup	growth function	number
B ₃	[2,4,6]	2
$A_2 imes A_1$	[2,2,3]	1
A ₂	[2, 3]	3
<i>B</i> ₂	[2, 4]	1
$A_1 imes A_1$	[2,2]	2
A ₁	[2]	4

3

<ロト < 四ト < 三ト < 三ト

Theorem (Steinberg 68) Let (W_T, T) be the Coxeter subgroup of (W, S) generated by $T \subseteq S$, and let its growth function be $f_T(t)$. Set $\mathcal{F} = \{T \subseteq S : W_T \text{ is finite }\}$. Then

$$\frac{1}{f_{\mathcal{S}}(t^{-1})} = \sum_{T \in \mathcal{F}} \frac{(-1)^{|T|}}{f_{T}(t)}.$$

$$\frac{1}{f_{\mathcal{S}}(t^{-1})} = \frac{-2}{[2,4,6]} + \frac{-1}{[2,2,3]} + \frac{3}{[2,3]} + \frac{1}{[2,4]} + \frac{2}{[2,2]} + \frac{-4}{[2]} + 1.$$

$$f_{S}(t) = \frac{(1+t)^{3}(1+t^{2})(1-t+t^{2})(1+t+t^{2})}{(t-1)(t^{7}+t^{6}+2t^{5}+2t^{4}+t^{3}+t^{2}-1)}$$

= 1+4t+10t²+21t³+40t⁴+73t⁵+...

KOMORI (Waseda)

< ロ > < 同 > < 回 > < 回 > < 回 >

$$\frac{1}{f_{S}(t^{-1})} = \tilde{Q}(t)/\tilde{P}(t) \Rightarrow f_{S}(t) = P(t)/Q(t)$$

where $P(t) = t^{n}\tilde{P}(1/t)$, $Q(t) = t^{n}\tilde{Q}(1/t)$.
Hence $R = 1/\tau$ is the smallest positive root of $Q(t)$.
Since $\tilde{Q}(t)$ is monic, $\tau > 1$ is an algebraic integer.
 $P(t)$ is a product of cyclotomic polynomials.

For compact Coxeter polyhedron P, $f_S(t) = P(t)/Q(t)$ is reciprocal (*i.e.* $f_S(t^{-1}) = f_S(t)$) when dim P is even, while

 $f_{S}(t)$ is antireciprocal (*i.e.* $f_{S}(t^{-1}) = -f_{S}(t)$) when dim P is odd (Serre 71).

A real algebraic integer $\tau > 1$ is called:

(1) a Salem number if τ^{-1} is a conjugate of τ and all conjugates of τ other than τ and τ^{-1} lie on the unit circle.

(2) a *Pisot number* if all algebraic conjugates of τ other than τ lie in the open unit disk.

(3) a *Perron number* if all of whose conjugates have strictly smaller absolute values. (i.e. Salem, Pisot \Rightarrow Perron)

KOMORI	(Waseda)
--------	----------

Growth rates for low dimensional cases

Theorem (Cannon-Wagreich 92, Parry 93)

The growth rates of cocompact 2 and 3-dimensional hyperbolic Coxeter groups are Salem numbers. In practice, Parry showed that the denominator polynomial Q(x) of the growth function of cocompact 2 and 3-dimensional hyperbolic Coxeter group is a product of distinct irreducible cyclotomic polynomials with exactly one Salem polynomial.

Theorem (Floyd 92)

The growth rates of cofinite 2-dimensional hyperbolic Coxeter groups are Pisot numbers.

Theorem (Yukita 18)

The growth rates of cofinite 3-dimensional hyperbolic Coxeter groups are Perron numbers.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conjectures (Kellerhals and Perren 11)

Let (W, S) be a Coxeter group acting on \mathbb{H}^n cocompactly.

- For *n* even, $f_S(t)$ has precisely $\frac{n}{2}$ poles $0 < t_1 < \cdots < t_{\frac{n}{2}} < 1$ in the interval (0, 1).
- For *n* odd, $f_S(t)$ has a pole at 1 and precisely $\frac{n-1}{2}$ poles $0 < t_1 < \cdots < t_{\frac{n-1}{2}} < 1$ in the interval (0, 1).

In both cases, all poles are simple, and the non-real poles are contained in the annulus of radius t_i for some $i \in \{1, \dots, \lfloor \frac{n}{2} \rfloor\}$.

2-Salem numbers as growth rates of 4-dimensional groups

Definition (Samet 52, Kerada 95)

A 2-Salem number is a real algebraic integer $\alpha > 1$, such that α has one conjugate root $\beta > 1$ while other conjugate roots ω satisfy $|\omega| \leq 1$ and at least one of them is on the unit circle. Call the minimal polynomial of α a 2-Salem polynomial. As in the case of a Salem polynomial, a 2-Salem polynomial is a palindromic polynomial of even degree. As a consequence, α^{-1} and β^{-1} are also roots and all roots different from $\alpha, \alpha^{-1}, \beta, \beta^{-1}$ lie on the unit circle.

Construction of a truncated 4-dimensional simplex

$$G(-\cos\theta_{ij}) = \begin{pmatrix} 1 & -\cos\pi/5 & 0 & 0 & 0 \\ -\cos\pi/5 & 1 & -1/2 & 0 & 0 \\ 0 & -1/2 & 1 & -\cos\pi/5 & 0 \\ 0 & 0 & \cos\pi/5 & 1 & -1/2 \\ 0 & 0 & 0 & -1/2 & 1 \end{pmatrix}$$

 $detG < 0 \Rightarrow$ the signature of $\,G = (4,1) \Rightarrow$ realizable in H^4

KOMORI (Waseda)

Friday 1 November, 2024 15 / 22

2-Salem numbers as growth rates and spectral radii

3

Gluing formula (T. Zehrt and C. Zehrt 11)

Consider two Coxeter n-polytope P_1 and P_2 having the same orthogonal facet F which is a Coxeter (n-1)-polytope, and let their growth functions be $W_1(t), W_2(t)$ and F(t) respectively. Then the growth function $W_1 *_{P_0} W_2(t)$ of the Coxeter polytope obtained by gluing P_1 and P_2 along F is given by

$$rac{1}{W_1 *_F W_2(t)} = rac{1}{W_1(t)} + rac{1}{W_2(t)} + (rac{t-1}{1+t})rac{1}{F(t)}$$

KOMORI	(Waseda)
	(vvascua)

Coxeter garlands (T. Zehrt and C. Zehrt 11)

Let G_n be the Coxeter polytope constructed from n copies of G by (n-1)gluings along orthogonal facets of G. Then the growth function of G_n is equal to $[2, 2, 5, 6](t^5 + 1)/D_n(t)$ where

$$D_n(t) = t^{16} - 2(n+1)t^{15} + t^{14} + (n-1)t^{13} + t^{12} + nt^{11} + (n-1)t^{10} + 2t^9 + 2(n-1)t^8 + 2t^7 + (n-1)t^6 + nt^5 + t^4 + (n-1)t^3 + t^2 - 2(n+1)t + 1.$$

They showed that $D_n(t)$ has 2 reciprocal pairs of positive real zeros and all the other zeros locate on the unit circle. Hence Coxeter garlands seem to have 2-Salem numbers as their growth rates. But it might be possible that it factorizes as a product of cyclotomic polynomials and Salem polynomials...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 2.1

For any $n \in \mathbb{N}$, $D_n(t)$ is a 2-Salem polynomial. Therefore 4-dimensional Coxeter garlands always have 2-Salem numbers as their growth rates.

Idea of the proof

The Mahler measure of $f(z) = \sum_{0 \le k \le d} a_k x^k = a_d \prod_{k=1}^d (z - z_k)$ is

$$M(f) = |a_d| \prod_{1 \le k \le d} \max\{1, |z_k|\}.$$

Then

$$|a_k| \leq \binom{d}{k} M(f).$$

Hence for fixed $d \in \mathbb{N}$ and fixed M > 0, there are only finitely many polynomials $f(z) \in \mathbb{Z}[z]$ with $deg(f) \leq d$ and $M(f) \leq M$.

・ロト ・ 同ト ・ ヨト ・ ヨト

<u>T. Zehrt and C. Zehrt 11: Theorem 2</u> The real roots $1 < \alpha_n < \beta_n$ of $D_n(t)$ of degree 16 satisfy

In practice Boyd and Mossingohoff classified \mathbb{Z} -polynomials with $deg(f) \leq 16$ and M(f) < 2 all of which do not factorize $D_n(t)$. Therefore $D_n(t)$ is irreducible over \mathbb{Z} .

Lists of Polynomials with Small Mahler Measure (Mossinghoff)

2024/09/12 23:08

wayback.cecm.sfu.ca/~mjm/Lehmer/lists/S6.txt

6	1.40126836793985	1-z^2-z^3-z^4+z^6
6	1.50613567955384	1-z-z^3-z^5+z^6
6	1.55603019132268	1-z-z^2+z^3-z^4-z^5+z^6
6	1.58234718368046	1-z^2-2*z^3-z^4+z^6
6	1.63557312992222	1-2*z+2*z^2-3*z^3+2*z^4-2*z^5+z^6
6	1.78164359860800	1-z-z^2-z^4-z^5+z^6
6	1.83107582510231	1-2*z+z^3-2*z^5+z^6
6	1.94685626827188	1-z-z^2-z^3-z^4-z^5+z^6
6	1.96355303898882	1-2*z-z^2+3*z^3-z^4-2*z^5+z^6
6	1.97481870829771	1-2*z+z^2-2*z^3+z^4-2*z^5+z^6
6	1.98779316684622	1-2*z^2-3*z^3-2*z^4+z^6
6	2.04249053394081	1-3*z+3*z^2-3*z^3+3*z^4-3*z^5+z^6
6	2.19564673649222	1-z-z^2-3*z^3-z^4-z^5+z^6
6	2.20113035058076	1-2*z-z^2+2*z^3-z^4-2*z^5+z^6
6	2.22586791398338	1-3*z+2*z^2-z^3+2*z^4-3*z^5+z^6
6	2.25645514685613	1-2*z-z^3-2*z^5+z^6
6	2.26844468522511	1-z-2*z^2-z^3-2*z^4-z^5+z^6
6	2.38214865205606	1-4*z+6*z^2-7*z^3+6*z^4-4*z^5+z^6
6	2.39629574140999	1-2*z-2*z^3-2*z^5+z^6
6	2.42122995630770	1-3*z+z^2+z^3+z^4-3*z^5+z^6
6	2.45317002237950	1-3*z+2*z^2-2*z^3+2*z^4-3*z^5+z^6
6	2.45963365088960	1-z-2*z^2-3*z^3-2*z^4-z^5+z^6
6	2.47541210131401	1-3*z+3*z^2-5*z^3+3*z^4-3*z^5+z^6
6	2.50382260970148	1-2*z-z^2-z^4-2*z^5+z^6
6	2.51454252585576	1-2*z-3*z^3-2*z^5+z^6
6	2.54204886300850	1-z-2*z^2-4*z^3-2*z^4-z^5+z^6
6	2.67509946332357	1-4*z^2-7*z^3-4*z^4+z^6
6	2.69311767304055	1-z-3*z^2-3*z^3-3*z^4-z^5+z^6
6	2.71824589309279	1-2*z-z^2-2*z^3-z^4-2*z^5+z^6
6	2.72706946010527	1-2*z-2*z^2+z^3-2*z^4-2*z^5+z^6
6	2.75146476230721	1-3*z+2*z^2-4*z^3+2*z^4-3*z^5+z^6
6	2.76295394334256	1-z-3*z^2-4*z^3-3*z^4-z^5+z^6
6	2.76701935053725	1-3*z+z^2-z^3+z^4-3*z^5+z^6
6	2.78618956786788	1-3*z+2*z^3-3*z^5+z^6

3

< □ > < 同 > < 回 > < 回 > < 回 >