NON-ARITHMETIC LATTICES

John R Parker

Durham University, UK j.r.parker@durham.ac.uk https://maths.dur.ac.uk/users/j.r.parker/

Symmetric spaces

A Riemannian manifold M is a symmetric space if for every point $p \in M$ the map $-Id : T_p(M) \longrightarrow T_p(M)$ extends to a global isometry of M.

Examples

- ▶ spaces of constant curvature: \mathbb{R}^n , S^n , \mathbf{H}^n .
- G semisimple Lie group with maximal compact subgroup K and Riemannian, then X = G/K is a symmetric space.

A symmetric space is of non-compact type if it has non-positive sectional curvatures.

The rank of a symmetric space M is the dimension of the largest Euclidean space that may be totally geodesically, isometrically locally embedded into M.

For example, a geodesic is *locally* an isometric embedding of \mathbb{R} and so all symmetric spaces have rank at least one.

Hyperbolic spaces

The hyperbolic spaces are the rank 1 symmetric spaces of non-compact type. They are

- ▶ Real hyperbolic *n* space $\mathbf{H}_{\mathbb{R}}^{n}$ for $n \ge 1$; $G = SO^{0}(n, 1)$ and K = SO(n).
- Complex hyperbolic *n* space $\mathbf{H}^n_{\mathbb{C}}$ for $n \ge 2$; $G = \mathrm{SU}(n, 1)$ and $K = \mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(1)) \simeq \mathrm{U}(n)$.
- Quaternionic hyperbolic *n* space $\mathbf{H}_{\mathbb{H}}^n$ for $n \ge 2$; $G = \operatorname{Sp}(n, 1)$ and $K = \operatorname{Sp}(n) \times \operatorname{Sp}(1)$.
- The octonionic hyperbolic plane H²_☉. G = F₄₍₋₂₀₎ and K = Spin(9).

 In fact H¹_ℂ ≃ H²_ℝ, H¹_ℍ ≃ H⁴_ℝ, H¹_☉ ≃ H⁸_ℝ hence above values of n.

 For example SU(1, 1) conjugate to SL(2, ℝ).

Lattices

Let G be a locally compact topological group with Haar measure. A discrete subgroup Γ of G is a lattice in G if the quotient space $\Gamma \setminus G$ has finite volume.

A lattice Γ is uniform if $\Gamma \setminus G$ is compact and it is non-uniform otherwise.

Suppose G semisimple Lie group with associated symmetric space X = G/K where K is a maximal compact and Riemannian metric g. Then

- \triangleright Γ acts properly discontinuously on X,
- the quotient space $\Gamma \setminus X$ has finite volume.

Examples

▶ $\mathbb{Z}^n < \mathbb{R}^n$ with quotient a *n*-dimensional flat torus T^n .

▶ The modular group $PSL(2, \mathbb{Z})$ – see later slides.

The first example is a uniform lattice, the second is non-uniform.

Example – triangle groups

Consider a triangle with sides L_1 , L_2 , L_3 and internal angles π/a , π/b , π/c where a, b, $c \in \mathbb{N} \cup \{\infty\}$ (where $\pi/\infty = 0$) Triangle is hyperbolic (resp Euclidean, spherical) 1/a + 1/b + 1/c < 1 (resp = 1, > 1).

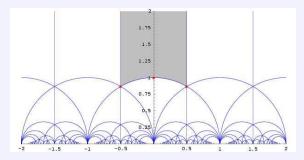
Let R_1 , R_2 , R_3 be reflection in L_1 , L_2 , L_3 . The group $\Delta_{a,b,c}$ generated by these reflections is a lattice in Isom(\mathbf{H}^2) (resp Isom(\mathbb{R}^2), Isom(S^2)) with presentation: $\langle R_1, R_2, R_3 | R_1^2 = R_2^2 = R_3^2 = (R_2 R_3)^a = (R_3 R_1)^b = (R_1 R_2)^c = I \rangle$

Sometimes we consider the index 2 orientation preserving group $\Gamma_{a,b,c} = \langle A, B | A^a = B^b = (AB)^c = I \rangle$

Here $A = R_2R_3$, $B = R_3R_1$ so $AB = R_2R_3R_3R_1 = R_2R_1$. There is a coset decomposition $\Delta_{a,b,c} = \Gamma_{a,b,c} \cup R_3\Gamma_{a,b,c}$. Example – the modular group $\mathrm{PSL}(2,\mathbb{Z}) = \Gamma_{2,3,\infty}$

$$\operatorname{SL}(2,\mathbb{Z})$$
 generated by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
It is discrete because \mathbb{Z} is discrete in \mathbb{R} .

These act on \mathbf{H}^2 by the Möbius transformations in $PSL(2, \mathbb{Z})$ $S: z \mapsto -1/z, \quad T: z \mapsto z+1.$ Fundamental domain a triangle with angles $0, \pi/3, \pi/3$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Commensurability

Lattices Γ_1 and Γ_2 in G are commensurable if there exists $A \in G$ so that $\Gamma_1 \cap (A\Gamma_2 A^{-1})$ has finite index in both Γ_1 and $A\Gamma_2 A^{-1}$.

For $n \ge 3$ define the Hecke group $H_n = \Gamma_{2,n,\infty}$ generated by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T_n = \begin{pmatrix} 1 & 2\cos(\pi/n) \\ 0 & 1 \end{pmatrix}$.

• H_3 is the modular group. Note $2\cos(\pi/3) = 1$.

Consider H_4 . Since $2\cos(\pi/4) = \sqrt{2}$ can't immediately conclude discreteness from matrix entries. However, let $A = \begin{pmatrix} 2^{1/4} & 0 \\ 0 & 2^{-1/4} \end{pmatrix}$. Then $H_3 \cap (AH_4A^{-1})$ generated by $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. This has index 3 in H_3 and index 2 in AH_4A^{-1} . So H_3 , H_4 commensurable, hence H_4 discrete.

• On the other hand, H_5 is not commensurable to H_3 (or to H_4)

Arithmeticity

A linear algebraic group defined over ${\mathbb Q}$ is

▶ $\mathcal{G} \subset \operatorname{GL}(m, \mathbb{C})$

 coefficients satisfy a set of polynomial equations with coefficients in Q.

Let $\mathcal{G}_{\mathbb{Z}} = \mathcal{G} \cap \operatorname{GL}(m, \mathbb{Z})$, $\mathcal{G}_{\mathbb{R}} = \mathcal{G} \cap \operatorname{GL}(m, \mathbb{R})$. Then $\mathcal{G}_{\mathbb{Z}}$ is an arithmetic subgroup of $\mathcal{G}_{\mathbb{R}}$.

Let G be a semisimple Lie group.

Let $\phi:\mathcal{G}_{\mathbb{R}}\longrightarrow G$ be a continuous, surjective homomorphism with compact kernel.

Then $\Gamma < G$ is arithmetic if Γ is commensurable with $\phi(\mathcal{G}_{\mathbb{Z}})$. (i.e.there exists $A \in G$ so that $A\Gamma A^{-1} \cap \phi(\mathcal{G}_{\mathbb{Z}})$ has finite index in both $A\Gamma A^{-1}$ and $\phi(\mathcal{G}_{\mathbb{Z}})$.) Example.

• (P)SL(2, \mathbb{Z}) – direct from definition

▶ the Hecke group H_4 – using commensurability to $SL(2, \mathbb{Z})$.

An example of an arithmetic group

Let Q be the quadratic form $Q = \text{diag}(1, ..., 1, -\sqrt{2})$. Let SO(Q) be the group of unimodular real matrices preserving Q. Then Q has signature (n, 1) and SO(Q) is isomorphic to SO(n, 1).

Let $\Gamma = SO(Q) \cap SL(n+1, \mathbb{Z}[\sqrt{2}])$ be the group of unimodular matrices with entries in $\mathbb{Z}[\sqrt{2}]$ preserving Q.

As $\mathbb{Z}[\sqrt{2}]$ is not discrete in \mathbb{R} we cannot deduce that Γ is discrete.

Let σ be the Galois automorphism of $\mathbb{Q}(\sqrt{2})$ sending $\sqrt{2}$ to $-\sqrt{2}$. Let $Q^{\sigma} = \operatorname{diag}(1, \ldots, 1, \sqrt{2})$. This has signature (n + 1, 0).

If $A \in \Gamma$ let A^{σ} be matrix obtained by applying σ to entries of A. Then $A^{\sigma} \in SO(Q^{\sigma}) \cap SL(n+1, \mathbb{Z}[\sqrt{2}])$.

 $\widehat{\Gamma} = \{(A, A^{\sigma}) | A \in \Gamma\}$ is a discrete subgroup of $SO(Q) \times SO(Q^{\sigma})$. Let $\phi : SO(Q) \times SO(Q^{\sigma}) \longrightarrow SO(Q)$ be map onto the first factor. Then $\ker(\phi) = SO(Q^{\sigma})$ which is compact.

Therefore $\Gamma = \phi(\widehat{\Gamma})$ is discrete. It is an arithmetic group.

Takeuchi's theorem

Consider the orientation preserving subgroups $\Gamma_{a,b,c}$ of the triangle groups $\Delta_{a,b,c}$ where $a, b, c \in \mathbb{N} \cup \{\infty\}$ with 1/a + 1/b + 1/c < 1. Note that $\Gamma_{a,b,c}$ is a lattice in $PSL(2,\mathbb{R}) = Isom_0(\mathbf{H}^2)$.

Theorem (Takeuchi 1977)

There are only finitely many triples (a, b, c) for which $\Gamma_{a,b,c}$ is arithmetic. For all other triples the group $\Gamma_{a,b,c}$ is non-arithmetic. Moreover, there are infinitely many commensurability classes of non-arithmetic triangle groups.

The only Hecke groups that are arithmetic are H_3 , H_4 , H_6 . In particular, H_5 is non-arithmetic – so not commensurable to H_3 .

Takeuchi's list

THEOREM 3. The complete list of all triples (e_1, e_2, e_3) of arithmetic type is as follows:

(i) Compact types.

 $\begin{array}{l} (2,3,7), (2,3,8), (2,3,9), (2,3,10), (2,3,11), (2,3,12), (2,3,14), (2,3,16), \\ (2,3,18), (2,3,24), (2,3,30), (2,4,5), (2,4,6), (2,4,7), (2,4,8), (2,4,10), \\ (2,4,12), (2,4,18), (2,5,5), (2,5,6), (2,5,8), (2,5,10), (2,5,20), (2,5,30), \\ (2,6,6), (2,6,8), (2,6,12), (2,7,7), (2,7,14), (2,8,8), (2,8,16), (2,9,18), \end{array}$

(2, 10, 10), (2, 12, 12), (2, 12, 24), (2, 15, 30), (2, 18, 18),

(3, 3, 4), (3, 3, 5), (3, 3, 6), (3, 3, 7), (3, 3, 8), (3, 3, 9), (3, 3, 12), (3, 3, 15), (3, 4, 4), (3, 4, 6), (3, 4, 12), (3, 5, 5), (3, 6, 6), (3, 6, 18), (3, 8, 8), (3, 8, 24), (3, 10, 30), (3, 12, 12),

(4, 4, 4), (4, 4, 5), (4, 4, 6), (4, 4, 9), (4, 5, 5), (4, 6, 6), (4, 8, 8), (4, 16, 16), (5, 5, 5), (5, 5, 10), (5, 5, 15), (5, 10, 10),

(6, 6, 6), (6, 12, 12), (6, 24, 24), (7, 7, 7), (8, 8, 8), (9, 9, 9), (9, 18, 18), (12, 12, 12), (15, 15, 15).

(ii) Non-compact types.

 $(2, 3, \infty), (2, 4, \infty), (2, 6, \infty), (2, \infty, \infty), (3, 3, \infty), (3, \infty, \infty), (4, 4, \infty), (6, 6, \infty), (\infty, \infty, \infty).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lattices and arithmeticity

In irreducible symmetric spaces X of non-compact type:

- ► All arithmetic groups are lattices (Borel & Harish-Chandra).
- All lattices are arithmetic when:
 - $\operatorname{Rank}(X) > 1$ (Margulis).
 - ▶ X is either $\mathbf{H}_{\mathbb{H}}^n$ or $\mathbf{H}_{\mathbb{O}}^2$ (Corlette, Gromov & Schoen).
- ▶ There exist non-arithmetic lattices in SO(n, 1) (so $X = \mathbf{H}_{\mathbb{R}}^n$) for all *n* (Gromov & Piatetski-Shapiro).
- This only leaves SU(n, 1) (so the case of $X = \mathbf{H}^n_{\mathbb{C}}$).
 - There exist non-arithmetic lattices in SU(2, 1) (Mostow 1980, Deligne-Mostow 1986, Deraux-P-Paupert 2016, 2021). Currently 22 commensurability classes known.
 - There exist non-arithmetic lattices in SU(3, 1) (Deligne-Mostow 1986, Deraux 2020).
 Currently 2 commensurability classes known.

Open problem:

Do there exist non-arithmetic lattices in SU(n, 1) for $n \ge 4$?

Descriptions of the lattices in SU(2, 1)

Four ways to describe complex hyperbolic lattices:

- Using arithmeticity not good when lattices non-arithmetic.
- Using hyperbolic geometry to build fundamental domains; Mostow (1980), Deraux-P-Paupert (2016,2021)
- ▶ Using algebraic geometry they are ball quotients whose Chern classes satisfy $c_1^2 = 3c_2$ Yau (1968), Miyaoka (1983).
 - For Deligne-Mostow lattices , Hirzebruch (1983, 1984), Shvartsman (1992).
 - For some Deraux-P-Paupert lattices Deraux (2018, 2019).
- As monodromy groups on certain moduli spaces.
 - Using hypergeometric functions in two variables (order 2 differential equation)
 Deligne-Mostow (1986) for the groups they construct.
 - Using higher hypergeometric functions in one variable (order 3 differential equation)
 P (2021) for all the above groups.

Complex hyperbolic space and its isometries

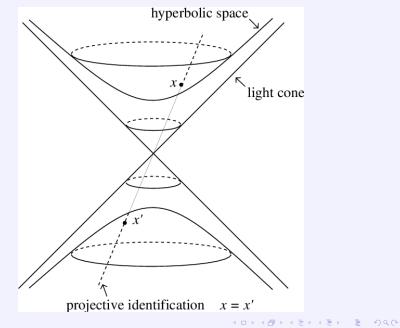
Let $\mathbb{C}^{n,1}$ be complex vector space with Hermitian form $H = \langle \cdot, \cdot \rangle$ of signature (n, 1). Let $V_{-} = \{ \mathbf{z} \in \mathbb{C}^{n,1} : \langle \mathbf{z}, \mathbf{z} \rangle < 0 \}.$ and $\mathbb{P} : \mathbb{C}^{n,1} - \{ \mathbf{0} \} \to \mathbb{CP}^n$ be canonical projection. Complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^n = \mathbb{P}V_{-}$.

A useful model is unit ball in \mathbb{C}^n : Take $\langle \mathbf{z}, \mathbf{z} \rangle = |z_1|^2 + \dots + |z_n|^2 - |z_{n+1}|^2$. If $\mathbf{z} \in V_-$ then $z_{n+1} \neq 0$. So $(z_1/z_{n+1}, \dots, z_n/z_{n+1})$ inhomogeneous coordinates on $\mathbf{H}^n_{\mathbb{C}}$. Finally $\langle \mathbf{z}, \mathbf{z} \rangle < 0$ implies $|z_1/z_{n+1}|^2 + \dots + |z_n/z_{n+1}|^2 < 1$.

SU(H) group of unimodular matrices preserving Hmaximal compact subgroup $K \simeq U(n)$. $\mathbf{H}^{n}_{\mathbb{C}} = SU(H)/K$. $PSU(H) = SU(H)/\{\lambda I\}$ holomorphic isometry group of $\mathbf{H}^{n}_{\mathbb{C}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complex version of Minkowski space



Non-arithmeticity

Non-arithmeticity criterion of Mostow for SU(H)Based on earlier criterion of Vinberg for Coxeter groups..

Theorem (Mostow)

Let E be a totally real number field and F be a purely imaginary quadratic extension of E and \mathcal{O}_F be the ring of integers of F. Let H be a Hermitian form of signature (n,1) defined over F.

- Suppose Γ ⊂ SU(H; O_F) is a lattice. Then Γ is arithmetic if and only if for alll φ ∈ Gal(F) not inducing the identity on E, the form ^φH is definite.
- ► SU(H; O_F) is a lattice if and only if it is arithmetic.

To show non-arithmeticity of a lattice $\Gamma \subset SU(H; \mathcal{O}_F)$ it is sufficient to find one φ with indefinite ${}^{\varphi}H$.

Constructing examples

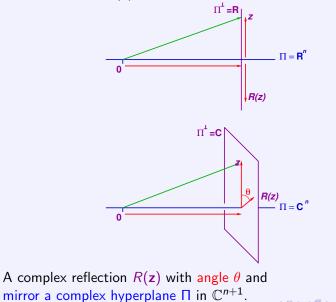
For the rest of the talk we will describe the groups considered by Mostow, Deligne-Mostow and Deraux-P-Paupert.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These will generalise triangle groups $\Delta_{a,b,c}$.

Real and complex reflections

A real reflection $R(\mathbf{z})$ with mirror a real hyperplane Π in \mathbb{R}^{n+1} .



◆□ → ◆◎ → ◆ ● → ◆ ● → ● ●

Complex reflections in $\mathbb{C}^{n,1}$

 Π complex hyperplane through origin in \mathbb{C}^n **n** normal vector in $\mathbb{C}^{n,1}$ to Π with respect to H

Complex reflection $R(\mathbf{z})$ with mirror Π and angle θ

$$\begin{aligned} R(\mathbf{z}) &= \left(\mathbf{z} - \frac{\langle \mathbf{z}, \mathbf{n} \rangle}{\langle \mathbf{n}, \mathbf{n} \rangle} \mathbf{n} \right) + (e^{i\theta}) \frac{\langle \mathbf{z}, \mathbf{n} \rangle}{\langle \mathbf{n}, \mathbf{n} \rangle} \mathbf{n} \\ &= \mathbf{z} + (e^{i\theta} - 1) \frac{\langle \mathbf{z}, \mathbf{n} \rangle}{\langle \mathbf{n}, \mathbf{n} \rangle} \mathbf{n}. \end{aligned}$$

Complex reflections can have arbitrary order.

Represented by matrix in U(H) with one eigenvalue $e^{i\theta}$ and *n* eigenvalues 1.

Multiply by $e^{-i\theta/(n+1)}$ to get matrix in SU(H).

We will be interested in complex hyperbolic 2-space $\mathbf{H}^2_{\mathbb{C}}$.

Braiding

If Π_1 and Π_2 are real hyperplanes that intersect with angle ϕ and R_1 and R_2 are (real) reflections with mirrors Π_1 and Π_2 , then R_1R_2 is a rotation through angle 2ϕ fixing $\Pi_1 \cap \Pi_2$. In particular, if $\phi = \pi/n$ then $(R_1R_2)^n = I$.

For complex reflections this notion is replaced by braiding. R_1 and R_2 satisfy a braid relation of length n, $br_n(R_1, R_2)$ if

•
$$(R_1R_2)^m = (R_2R_1)^m$$
 if $n = 2m$ is even;

• $(R_1R_2)^m R_1 = (R_2R_1)^m R_2$ if n = 2m + 1 is odd.

Note:

- 1. $br_2(R_1, R_2)$ says R_1 and R_2 commute: $R_1R_2 = R_2R_1$;
- 2. $br_3(R_1, R_2)$ is the classical braid relation: $R_1R_2R_1 = R_2R_1R_2$.
- 3. If R_1 and R_2 both have order 2 then br_n(R_1, R_2) if and only if $(R_1R_2)^n = I$.

Complex hyperbolic triangle groups

Recall the real triangle groups $\Delta_{a,b,c}$ rom the start of the talk $\langle R_1, R_2, R_3 | R_1^2 = R_2^2 = R_3^2 = (R_2R_3)^a = (R_1R_3)^b = (R_1R_2)^c = I \rangle$

- Consider three complex lines L_1 L_2 , L_3 in $\mathbf{H}^2_{\mathbb{C}}$.
- Let R₁, R₂, R₃ be complex reflections in these lines, each with angle 2π/p. Therefore the relations R₁², R₂², R₃² are replaced with R₁^p, R₂^p, R₃^p.
- At each vertex the power of the product is replaced with a braid relation:

the relation $(R_2R_3)^a$ is replaced with $\operatorname{br}_a(R_2, R_3)$; the relation $(R_1R_3)^b$ is replaced with $\operatorname{br}_b(R_1, R_3)$; the relation $(R_1R_2)^c$ is replaced with $\operatorname{br}_c(R_1, R_2)$.

- ► To determine the triangle (and the group) we need an extra parameter. We suppose $br_d(R_1, R_3^{-1}R_2R_3)$.
- There will be further relations.....

The groups we consider

The group is a subgroup of SU(2, 1) generated by three complex reflections R_1 , R_2 , R_3 Each of R_1 , R_2 , R_3 has rotation angle $2\pi/p$, so order $p \ge 2$. They satisfy the following braid relations. $\operatorname{br}_a(R_2, R_3)$, $\operatorname{br}_b(R_1, R_3)$, $\operatorname{br}_c(R_1, R_2)$, $\operatorname{br}_d(R_1, R_3^{-1}R_2R_3)$.

In what follows we use the following conventions:

- (a, b, c; d) gives a an allowable set of braid relations;
- ▶ For each (*a*, *b*, *c*; *d*) we list the allowable orders of reflection *p*;
- If p is red then the group is non-arithmetic; if p is blue then the group is arithmetic.

The lattices with a = b = c = 3 were constructed by Mostow (1980), Livné (1981), Deligne-Mostow (1986). The others were constructed by Deraux-P-Paupert (2016, 2021). The lattices with $b \neq c$ follow from ideas of Thompson.

а	b	С	d	p
3	3	3	2	5, 6, 7, 8, <mark>9</mark> , 10, 12, 18
3	3	3	3	4, 5, 6, 7, 8, 9, 10, 12, 18
3	3	3	4	3, 4, 5, 6,8, 12
3	3	3	5	3, 4, 5, 10
3	3	3	6	3, 4, 6
3	3	3	7	3, 7
3	3	3	8	3, 4
3	3	3	9	3
3	3	3	10	3
3	3	3	12	3
4	4	4	3	3, 4, 5, 6, 8, 12
4	4	4	4	3, 4, 5, 6, 8, 12
4	4	4	5	2, 3, 4
5	5	5	3	3, 4, 5, 10
5	5	5	5	2, 3, 4, 5, 10
6	6	6	4	3, 4, 6

а	b	С	d	p
3	3	4	4	3 , 4, 5, 6, 8, 12
3	3	5	5	2, 3, 5, 10
4	4	3	3	4, 5, 6, 8, 12
5	5	4	4	3, 4, 5
3	3	4	3	3, 4, 5, 6, 8, 12
3	3	4	5	3, 4, 5
3	3	4	6	3, 4, 5
3	3	4	7	2, 7
2	3	3	3	5, 6, 7, 8, 9, 10, 12, 18
2	3	4	4	4, 5, 6, 8, 12
2	3	5	5	3, 4, 5, 10
2	3	6	6	3, 4, 6
3	4	4	4	3, 4, 6, 12

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ▲ 臣 → のへで

Sample presentations

$$\begin{array}{l} (a,b,c;d) = (6,6,6;4) \\ R_2 = JR_1J^{-1}, \ R_3 = J^{-1}R_1J = JR_2J^{-1}, \\ R_1,R_2,R_3,J: \ R_1^p, \ J^3, \ (R_1J)^8, \ (R_1R_2)^{\frac{3p}{p-3}}, \ (R_1R_3^{-1}R_2R_3)^{\frac{4p}{p-4}}, \\ \mathrm{br}_6(R_1,R_2), \ \mathrm{br}_4(R_1,R_3^{-1}R_2R_3) \end{array} \right)$$

$$\begin{array}{c} (a, b, c; d) = (4, 4, 4; 3) \\ \\ \left\langle \begin{array}{c} R_2 = JR_1 J^{-1}, \ R_3 = J^{-1}R_1 J = JR_2 J^{-1}, \\ R_1, R_2, R_3, J : \ R_1^p, \ J^3, \ (R_1 J)^7, \ (R_1 R_2)^{\frac{4p}{p-4}}, \ (R_1 R_3^{-1} R_2 R_3)^{\frac{6p}{p-6}}, \\ \\ \mathrm{br}_4(R_1, R_2), \ \mathrm{br}_3(R_1, R_3^{-1} R_2 R_3) \end{array} \right\rangle$$

THANK YOU FOR YOUR ATTENTION!