


Symmetric spaces

A Riemannian manifold M is a symmetric space if for every point
p € M the map —Id : T,(M) — T,(M)
extends to a global isometry of M.
Examples
» spaces of constant curvature: R”, S”, H".

» G semisimple Lie group with maximal compact subgroup K
and Riemannian, then X = G/K is a symmetric space.

A symmetric space is of non-compact type if it has non-positive
sectional curvatures.

The rank of a symmetric space M is the dimension of the largest
Euclidean space that may be totally geodesically, isometrically
locally embedded into M.

For example, a geodesic is locally an isometric embedding of R and
so all symmetric spaces have rank at least one.



Hyperbolic spaces

The hyperbolic spaces are the rank 1 symmetric spaces of
non-compact type. They are
» Real hyperbolic n space Hy for n > 1;
G =S0°%n,1) and K = SO(n).
» Complex hyperbolic n space HE for n > 2;
G =SU(n,1) and K = S(U(n) x U(1)) ~ U(n).
» Quaternionic hyperbolic n space H; for n > 2;
G = Sp(n,1) and K = Sp(n) x Sp(1).
» The octonionic hyperbolic plane HZ.
G = F4(_20) and K = Spin(9).
In fact Hé ~ Hfg, HI}H ~ Hﬂ‘%, H(%J) ~ H% hence above values of n.
For example SU(1,1) conjugate to SL(2,R).



Lattices

Let G be a locally compact topological group with Haar measure.
A discrete subgroup I of G is a lattice in G if the quotient space
N\ G has finite volume.

A lattice I is uniform if [\ G is compact and it is non-uniform
otherwise.

Suppose G semisimple Lie group with associated symmetric space
X = G/K where K is a maximal compact and Riemannian metric
g. Then

» [ acts properly discontinuously on X,

» the quotient space '\ X has finite volume.

Examples
» 7" < R" with quotient a n-dimensional flat torus T".
» The modular group PSL(2,7Z) — see later slides.

The first example is a uniform lattice, the second is non-uniform.



Example — triangle groups

Consider a triangle with sides Ly, Ly, L3 and internal angles
n/a, /b, m/c where a, b, c € NU {oo} (where 7/c0 = 0)
Triangle is hyperbolic (resp Euclidean, spherical)
1/a+1/b+1/c<1(resp =1, >1).

Let Ry, R», R3 be reflection in Ly, Ly, Ls.

The group A, , - generated by these reflections is a lattice in
Isom(H?) (resp Isom(R?), Isom(S?)) with presentation:

(R, Ro, R3 | R? = R2 = R32 = (R2R3)? = (R3R1)? = (RiR) = 1)
Sometimes we consider the index 2 orientation preserving group
ra,b,c: = <A7 B | A? = Bb = (AB)C - I)

Here A = R2R3, B = R3R1 so AB = R2R3R3R1 = R2R1.

There is a coset decomposition A, pc =T,pcUR3M5pc.



Example — the modular group PSL(2,Z) = 3.

0 —1 11
SL(2,7Z) generated by S = <1 0 ) and T = (0 1).
It is discrete because Z is discrete in R.

These act on H? by the Mdbius transformations in PSL(2, Z)
S:z+——-1/z, T:z+—z+1
Fundamental domain a triangle with angles 0, 7/3,7/3.
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Commensurability

Lattices '; and > in G are commensurable if there exists A € G
so that 1 N (AF2A~1) has finite index in both 1 and AlpA7L.

For n > 3 define the Hecke group H, =2 5

(0 -1 (1 2cos(m/n)
generated by S = (1 0 > and T, = <0 1 )

» Hs is the modular group. Note 2cos(7/3) = 1.

» Consider H,. Since 2cos(m/4) = /2 can't immediately
conclude discreteness from matrix entries.
24 0

However, let A = 0 o-1/4)

01 11
This has index 3 in Hs and index 2 in AH A~ L.
So H3, Hs commensurable, hence H; discrete.

Then H3 N (AH4A~1) generated by <1 2) and <1 0).

» On the other hand, Hs is not commensurable to H3 (or to Ha)



Arithmeticity

A linear algebraic group defined over Q is
» G C GL(m,C)
» coefficients satisfy a set of polynomial equations with
coefficients in Q.
Let Gz = GNGL(m,Z), Gr = G N GL(m,R).
Then Gy is an arithmetic subgroup of Gg.
Let G be a semisimple Lie group.

Let ¢ : Gr —> G be a continuous, surjective homomorphism with
compact kernel.

Then I < G is arithmetic if I is commensurable with ¢(Gz).
(i.e.there exists A € G so that ATA~1 N ¢(Gz) has finite index in
both ATA™1 and ¢(Gz).)
Example.

» (P)SL(2,Z) — direct from definition

» the Hecke group Hs — using commensurability to SL(2, Z).



An example of an arithmetic group

Let @ be the quadratic form Q = diag(1,...,1, —/2).
Let SO(Q) be the group of unimodular real matrices preserving Q.
Then Q has signature (n,1) and SO(Q) is isomorphic to SO(n, 1).

Let I = SO(Q) NSL(n + 1,Z[v/2]) be the group of unimodular
matrices with entries in Z[ﬁ] preserving Q.
As Z[v/2] is not discrete in R we cannot deduce that I is discrete.

Let o be the Galois automorphism of Q(v/2) sending v/2 to —v/2.
Let Q° = diag(1,...,1,v/2). This has signature (n+ 1,0).

If A€l let A be matrix obtained by applying o to entries of A.
Then A% € SO(Q?) NSL(n + 1,Z[v2]).

T= {(A,A7)| A €T} is a discrete subgroup of SO(Q) x SO(Q7).
Let ¢ : SO(Q) x SO(Q7) — SO(Q) be map onto the first factor.
Then ker(¢) = SO(Q?) which is compact.

Therefore I = ¢(T) is discrete. It is an arithmetic group.



Takeuchi's theorem

Consider the orientation preserving subgroups I', 5, . of the triangle
groups A, p - where a,b,c € NU {oo} with 1/a+1/b+1/c < 1.

Note that I, is a lattice in PSL(2, R) = Isomg(H?).

Theorem (Takeuchi 1977)

There are only finitely many triples (a, b, ¢) for which ', p, . is
arithmetic. For all other triples the group I, p ¢ is non-arithmetic.
Moreover, there are infinitely many commensurability classes of
non-arithmetic triangle groups.

The only Hecke groups that are arithmetic are Hs, Hj, Hs.
In particular, Hs is non-arithmetic — so not commensurable to Hs.



Takeuchi's list

THEOREM 3. The complete list of all triples (e,, e, e;) of arithmetic type is
as follows:

(i) Compact types.

(2,3,7), (2,3,8), (2,3,9), (2,3, 10), (2,3,11), (2,3,12), (2,3, 14), (2, 3, 16),

(2,3,18), (2,3,24), (2,3,30), (2,4,5), (2,4,6), (2,4,7), (2,4,8), (2,4, 10),

(2,4, 12), (2,4,18), (2,5,5), (2,5,6), (2,5,8), (2,5,10), (2,5, 20), (2, 5, 30),

(2,6,6), (2,6,8), (2,6,12), (2,7,7), (2,7, 14), (2,8, 8), (2, 8, 16), (2,9, 18),

(2, 10, 10), (2, 12,12), (2,12, 24), (2,15, 30), (2, 18, 18),

B3,3,4), 3,3,5),3,3,6), 3,37, 3378), (33,9, (33,12, (3,315),
(3,4,4), 3,4,6), 3,4,12), B,55), 3,6,6), (3,6,18), (3,8,8), (3,8,24),
(3, 10, 30), (3,12, 12),

(4,4,4), 4,4,5), (4,4,6), (4,4,9), (4,5,5), (4,6,6), (4,8,8), (4,16, 16),
5,5,5), 5,5,10), (5,5, 15), (5, 10, 10),

(6, 6, 6), (6,12,12), (6, 24,24), (7,7,7), (8, 8,8), (9,9,9), (9,18,18),

(12, 12, 12), (15, 15, 15).

(ii) Non-compact types.

(2,3, ), (2,4, ), (2,6, ), (2, 0, 0), (3,3, c0), (3,0c0,c0), (4,4,0c0),
(6, 6, ), (o0, 00, ).



Lattices and arithmeticity

In irreducible symmetric spaces X of non-compact type:
» All arithmetic groups are lattices (Borel & Harish-Chandra).
» All lattices are arithmetic when:

> Rank(X) > 1 (Margulis).
> X is either HJ or H? (Corlette, Gromov & Schoen).

» There exist non-arithmetic lattices in SO(n, 1) (so X = HE)
for all n (Gromov & Piatetski-Shapiro).
This only leaves SU(n, 1) (so the case of X = H).

» There exist non-arithmetic lattices in SU(2,1) (Mostow 1980,
Deligne-Mostow 1986, Deraux-P-Paupert 2016, 2021).
Currently 22 commensurability classes known.

» There exist non-arithmetic lattices in SU(3,1)
(Deligne-Mostow 1986, Deraux 2020).

Currently 2 commensurability classes known.

Open problem:
Do there exist non-arithmetic lattices in SU(n, 1) for n > 47



Descriptions of the lattices in SU(2, 1)

Four ways to describe complex hyperbolic lattices:
» Using arithmeticity — not good when lattices non-arithmetic.

» Using hyperbolic geometry to build fundamental domains;
Mostow (1980), Deraux-P-Paupert (2016,2021)

P Using algebraic geometry — they are ball quotients whose
Chern classes satisfy ¢ = 3¢ Yau (1968), Miyaoka (1983).
» For Deligne-Mostow lattices ,
Hirzebruch (1983, 1984), Shvartsman (1992).
» For some Deraux-P-Paupert lattices
Deraux (2018, 2019).

» As monodromy groups on certain moduli spaces.

» Using hypergeometric functions in two variables
(order 2 differential equation)
Deligne-Mostow (1986) for the groups they construct.
» Using higher hypergeometric functions in one variable
(order 3 differential equation)
P (2021) for all the above groups.



Complex hyperbolic space and its isometries

Let C™! be complex vector space with

Hermitian form H = (-, -) of signature (n,1). Let
Vo={zeC" : (z,z) < 0}.

and P: C™! — {0} — CP" be canonical projection.
Complex hyperbolic space HZ. = PV_.

A useful model is unit ball in C":

Take (z,2) = |z1|> + - + |zal? = |zoy1 />

If ze V_ then z,+; # 0.

So (z1/znt1, - - -+ Zn/Zn+1) inhomogeneous coordinates on HE.
Finally (z,z) < 0 implies |z1/zp+1|> + - -+ + |2n/zns1]? < 1.

SU(H) group of unimodular matrices preserving H

maximal compact subgroup K ~ U(n).

HZ = SU(H)/K.

PSU(H) = SU(H)/{AI'} holomorphic isometry group of HZ.



Complex version of Minkowski space
hyperbolic space
yP P N

N
light cone

projective identification x = x'



Non-arithmeticity

Non-arithmeticity criterion of Mostow for SU(H)
Based on earlier criterion of Vinberg for Coxeter groups..

Theorem (Mostow)

Let E be a totally real number field

and F be a purely imaginary quadratic extension of E

and OFf be the ring of integers of F.

Let H be a Hermitian form of signature (n,1) defined over F.

» Suppose I C SU(H; OF) is a lattice.
Then I is arithmetic if and only if
for alll p € Gal(F) not inducing the identity on E,
the form ¥H is definite.

» SU(H; OF) is a lattice if and only if it is arithmetic.

To show non-arithmeticity of a lattice ' € SU(H; OF)
it is sufficient to find one ¢ with indefinite ?H.



Constructing examples

For the rest of the talk we will describe the groups considered by
Mostow, Deligne-Mostow and Deraux-P-Paupert.

These will generalise triangle groups A, p c.



Real and complex reflections
A real reflection R(z) with mirror a real hyperplane M in R™1.

HL =R
V4
I/ H : R"
0
R(z)
m=c
| 2
9 |R(z) i
, . | _n-=c
0

A complex reflection R(z) with angle ¢ and
mirror a complex hyperplane M in C™*1,



Complex reflections in C™!

M complex hyperplane through origin in C”
n normal vector in C™! to I with respect to H

Complex reflection R(z) with mirror 1 and angle 6

" = (=) F

z+ (e —1)

(z,n)

(n,mn)

Complex reflections can have arbitrary order.

Represented by matrix in U(H) with
one eigenvalue e/’ and n eigenvalues 1.

Multiply by e=?/("*1) to get matrix in SU(H).

. . . . 2
We will be interested in complex hyperbolic 2-space HE.



Braiding

If My and Ty are real hyperplanes that intersect with angle ¢
and Ry and R; are (real) reflections with mirrors 1y and Iy,
then Ry Ry is a rotation through angle 2¢ fixing 11 N [».
In particular, if = 7/n then (R1Rz)" = I.
For complex reflections this notion is replaced by braiding.
R1 and R satisfy a braid relation of length n, br,(Ri, R) if
» (RiR2)™ = (R2R1)™ if n=2m is even;
> (RLR2)™Ry = (RyRy)™Ry if n=2m + 1 is odd.
Note:
1. bra(Ri1, R2) says Ry and R, commute: R1Ry = Ry Ry;
2. br3(Ry, Ry) is the classical braid relation: RiR,R; = RaR1R;.

3. If Ry and R, both have order 2 then
br,(R1, Rz) if and only if (Ri1R2)" = 1I.



Complex hyperbolic triangle groups

Recall the real triangle groups A, , . rom the start of the talk
(Ri,R2, R3| R = RZ = R? = (RoR3)? = (RiR3)? = (RiR2)“ = 1)

> Consider three complex lines Ly Lp, L3 in HZ.

> Let Ry, R», R3 be complex reflections in these lines, each with
angle 27 /p. Therefore
the relations R?, R3, R3 are replaced with RY, R, RY.

> At each vertex the power of the product is replaced with a
braid relation:
the relation (R2R3)? is replaced with br,(Rs, R3);
the relation (RyR3)P is replaced with bry(Ry, Rs);
the relation (R R>)€ is replaced with bro(Ry, R2).

» To determine the triangle (and the group) we need an extra
parameter. We suppose bry(Ri, R3’1R2R3).

» There will be further relations.....



The groups we consider

The group is a subgroup of SU(2,1)

generated by three complex reflections Ry, R>, Rs3

Each of R, R», R3 has rotation angle 27 /p, so order p > 2.
They satisfy the following braid relations.

br,(Re, R3), brp(R1, R3), brc(Ri, R2), bry(Ri, R;1R2R3).

In what follows we use the following conventions:
» (a,b,c;d) gives a an allowable set of braid relations;
» For each (a, b, c; d) we list the allowable orders of reflection p;

» If pis red then the group is non-arithmetic;
if p is blue then the group is arithmetic.

The lattices with a = b = ¢ = 3 were constructed by

Mostow (1980), Livné (1981), Deligne-Mostow (1986).

The others were constructed by Deraux-P-Paupert (2016, 2021).
The lattices with b # ¢ follow from ideas of Thompson.
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Sample presentations
(a, b,c;d) =(6,6,6;4)

Ry =JRiJ™', Ry =J'RiJ = JRyJ Y,
g 4
<R1’R2’R3’J: RE, 2, (RS, (RiRe)73, (RuRy'RoRs)> 4, >
bre(R1, R2), bra(Ry, Ry ReRs)

< Ry, = JRlJ_l, R; = J_lRlJ = JRQJ_I, >

bra(Ry, Rz), br3(Ry, Ry ' RaRs)

(a,b,c;d) =(3,3,4;5)
4p _10p
RP, (RiRaR3)®, (RiR2)?—*, (RiR3 ' RaR3)%-10,
<R17 R2, Rs : bI‘3(R2, R3), bl“3(R3, Rl), b1"4(R1, Rz), >
brs(R1, Ry *R2R3)



THANK YOU FOR YOUR ATTENTION!



